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Abstract

This work aims to improve the execution of business processes by developing
an operational decision support system to help human decision makers.
Historical event data is used for predictive analysis, the training of a decision
tree and logistic regression, while a process monitoring engine acts as data
aggregator.

The proposed approach was implemented as a proof-of-concept prototype,
and evaluated by performing simulation runs and collecting the accumulated
data. A small Business Process Execution and Monitoring environment
connected simulation, recommendation service and process monitoring and
allowed the exportation of the collected event logs. Additionally it stored
prediction and classification results, which then were analysed together with
the event logs with third party software.

The evaluation has shown that it is possible to achieve a good recommen-
dation performance in regards to metrics such as root-mean squared er-
ror, recall and precision, even with a few input features. However, it has
also shown that these findings only apply for process instances which have
reached the last part of their life-time. When focusing on the development of
the performance indicators over time, it is obvious that young cases do not
have enough data associated to provide confident recommendations early
on.
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Chapter 1

Introduction

1.1 Motivation

IT systems of today’s organisations are growing increasingly complex due
to the requirements of modern project management. The globalisation has
lead to a previously unknown economic interconnectedness of autonomous
organisations. With this, a need of cooperation and information exchange
between their IT systems emerges.1 To face these challenges, businesses
leverage concepts like Workflow Management (WFM).

WFM, or the automation of business processes, has already been in scien-
tific focus since the early nineties,2 and subsequently was widely adapted by
companies in the real world. In recent years the focus has shifted to Business
Process Management (BPM), often referred to as an extension of WFM.3
BPM not only aims at process automation, but also includes means of pro-
cess analysis and extends automation into the area of real-time operational
business support – or short: “BPM is all about making choices”.4

1. Frame, J. D., The New Project Management: Tools for an Age of Rapid Change,
Complexity, and Other Business Realities, 2nd ed. (Jossey-Bass, 2002), p. 4, isbn: 978-
0-7879-5892-3; North, M. J. and Macal, C. M., Managing Business Complexity: Dis-
covering Strategic Solutions with Agent-Based Modeling and Simulation (New York, NY,
USA: Oxford University Press, 2007), p. 3, isbn: 978-0195172119.

2. Medina-Mora, R. et al., “The action workflow approach to workflow management
technology,” in Proceedings of the Conference on Computer-Supported Cooperative Work
(CSCW ’92) (1992), 281–288, isbn: 0897915437.

3. van der Aalst, W. M. P., “Business Process Management: A Comprehensive
Survey,” ISRN Software Engineering 2013 (2013): p. 1, issn: 2090-7680, doi:10.1155/
2013/507984.

4. Ibid., p. 10.

1
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

While WFM is a rather mechanical approach, BPM tries to account for hu-
man factors as well. Business processes involving human actors might need
different handling than a pure machine-to-machine interaction. When con-
sidering humans in the management of operations, the traditional concept
of resources has to be redefined. Traditionally resources include mostly
mechanical numbers, i.e. funds, available machines, number of Full-time
equivalents (FTEs) or production inputs and outputs. Those resources usu-
ally act as anticipated constraints for any planning and optimisation and
sometimes can be represented in units of each other. Monetary resources
usually can be converted into other resources like FTEs or available ma-
chines. 5

A possible human-centered resource is defined by Davenport and Beck as
attention. In their point of view the attention of its managers is a very
valuable – because limited – resource for any company.6 Based on findings
in the psychology humans only have a limited pool of attention. When
flooded with too much information this pool is drained quickly, leading
to inefficient decisions. Process management can take those new findings
into account to provide automated decision support systems which in this
example could help managers shift their attention to actual and important
problems in the company’s workflow.

Figure 1.1: The challenge of process management.7

Fig. 1.1 illustrated the performance degradation encountered in the imple-
mentation of a process model. At the highest level, strategic goals lead an
organisation’s long-term orientation. Based on these goals, an ideal process
design can be derived. At this point any anticipated constraints need to

5. Naïvely neglecting other real-time constraints, e.g. a limited labour market.
6. Davenport, T. H. and Beck, J. C., The attention economy: understanding the

new currency of business (Boston, MA: Harvard Business School Press, 2001), isbn:
1578518717.

7. Wrt. discussion with Michael zur Mühlen; October 9,2013)

2



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

be taken into consideration for a realistic design. Furthermore, during the
real-time execution unforeseen constraints again can lower the overall per-
formance. Business Process Management as a whole aims at counteracting
this performance degradation at all levels. Supporting the design of a pro-
cess model can help to assess anticipated constraints and to create a better
process model. Operational support can specifically help at the lowest level,
the actual process execution, to mitigate performance penalties originating
from real-time constraints.

1.1.1 Perspectives on Decision Making Tasks in BPM

(a) Designer Perspective (b) User Perspective

Figure 1.2: Traditional perspectives on Workflow Management (own illustration).

A process model plays a central role in BPM, and this thesis distinguishes
three perspectives on decision making tasks in workflow management: The
designer perspective, the user perspective and the management perspective.

The Designer Perspective is a holistic view on the underlying model of a
workflow, illustrated in Fig. Fig. 1.2a It is widely used for approaches of
data and process mining. Data mining describes the knowledge discovery
on large data sets, with the goal of extracting information into an under-
standable structure like patterns or decision rules. Process mining extends
those methods to the domain of process management. It aims at gaining
a deep insight into raw event data collected by a business IT system and
often leads to the automatic creation of process models.8 The designer per-
spective is useful to analyse and visualise the process structure, to carry out

8. van der Aalst, W. M. P., Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes (Heidelberg: Springer Berlin / Heidelberg, 2011), pp. 1-10,
isbn: 9783642193446, doi:10.1007/978-3-642-19345-3.

3
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

performance evaluations and to test process compliance. It can be described
as the big picture on the workflow of an organisation.

The User Perspective as depicted in Fig. 1.2b concentrates on decisions
within a workflow. Every time a decision point within the workflow is
reached, the involved actors need to decide on a possible course of action.
Actors include both humans and automated IT systems. It is used to de-
velop local decision support by means of decision mining (data mining) or
recommender systems. However this perspective is restricted to a single
process instance in the workflow and requires prior identification of decision
tasks with their possible outcomes. To provide informed decision support
at such points, the underlying process model can be utilised.

Figure 1.3: Management perspective (own illustration).

The Management Perspective illustrated in Fig. 1.3 describes a global per-
spective on all running processes. In real life systems, hundreds of processes
are active simultaneously and depend on each other. Given a scarce re-
source availability within the organisation, both in terms of time (which is
ultimately money) and human attention, managers need to decide on which
area they should focus on. To make this decision, they need information
about current bottlenecks and process instances which might develop to be
problematic in the future. A global decision support system needs to incor-
porate this perspective. The management perspective is characterised by
a focus on multiple process instances and their inter-dependencies, which
often are not obvious to the observer. It aims at solving the question What
should I focus on?.

This thesis focuses on the identification of problematic instances in the
management perspective with the goal to develop a support systems for
managers. The system should help them distribute their attention span
on the most pressing issues which need manual resolving. Additionally it
should give hints on how to mitigate the identified problems.

4



1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

1.1.2 Pattern matching trap

When taking humans into consideration, apart from a new perspective on
resources another aspect arises. While humans have excellent capabilities
in pattern matching, they often fail to fully assess a new situation. Instead
they tend to match upcoming decision situations with patterns experienced
in the past. This behaviour is called pattern matching trap9 and can lead
to biased decisions (e.g. the retailer who only using historic sales forecast,
when in reality there are additional other predictor values).

An automated support system offers an additional objective, unbiased view
onto decision making tasks. By combining both the humans capability of
matching patterns and the systems ability to learn from history data, a
forecasting process can be optimised which subsequently leads to better
decisions.

Such real-time approaches are rendered possible by recent adaptations of
Process-Aware Information Systems (PAISs) in real company environments,
which allow the collection of vast amounts of process data. This develop-
ment is also known as Big Data.10

1.2 Problem Statement

1.2.1 Research Questions

In reality the full potential of real-time optimisation has not been tapped
yet. Past approaches have often ignored the human factor in BPM, and
concentrated solely on technical process optimisation and automation. Ide-
ally, however, human decision makers should be the focus of BPM. These
considerations lead to the following questions:

• How can human-centered operational decision support in BPM envi-
ronment be provided?

• Which previous approaches already exist in this area?

Subsequently, in order to advance decision support technology in BPM, re-
quirements for such decision support need to be established. Most human
decision makers interact with BPM through concrete process instances, and

9. Hoch, S. J. and Schkade, D. A., “Psychological Approach Support to Decision
Systems,” Management Science 42, no. 1 (1996): pp. 52 ff.
10. Manyika, J. et al., Big data: The next frontier for innovation, competition, and

productivity, technical report June (McKinsey Global Institute, 2011), pp. 15-37.

5



1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

therefore this actual process execution should be improved. To do so, firstly
problematic instances have to be identified. This requires well-defined, au-
tomatically detectable characteristics and generic performance scores. They
can be derived by analysing real process logs. The second challenge is to
identify those instances in real time. At the end of this process, the human
decision makers need to be informed of any such problematic instances.
This consideration leads to the following questions:

• What are problematic process instances and how to identify them?

• How to ensure that these instances get the necessary attention by
decision makers?

• How to use existing event data to support future decision making?

• What recommendations can be given when encountering a problem-
atic process instance?

1.2.2 Goals

In the course of this thesis a generic approach to providing operational de-
cision support in BPM should be developed. To achieve this, firstly an
overview of existing approaches in the area of operational decision support
needs to be created. This should result in a suitable classification, a de-
scription of the shortcomings and the extraction of requirements for the
conceptual background.

The conceptual approach needs to tackle the identification of problematic
process instances, possibly by means of identifying reliable real-time indica-
tors to recognise such processes. Furthermore, a decision support strategy
aimed to help human decision makers should be introduced.

After that, the approach should be implemented as a proof-of-concept pro-
totype and evaluated on a suitable data set. The evaluation should be
aimed to verify whether the approach developed in the course of this thesis
is feasible and actually improves the performance of business processes.

6
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1.3 Methodology and Structure

1.3.1 Methodological approach

To tackle those problems this work follows the design science paradigm.
It aims at gaining scientific insight through creation and evaluation of IT
solutions in form of models, methods or prototypes.11 Hevner defines seven
guideline for design science research, each of which this work follows.12 The
following paragraphs give an overview over those guidelines, and later on
the chapters of this thesis are related to each one of them.

The first guideline states that “design-science research must produce a viable
artifact in form of a construct, a model, a method or instantiation”13 and
the second guideline stresses about the need of concentrating upon an im-
portant and relevant business problem. Guideline 3 states that the quality
of the design artifact must be “demonstrated via well-executed evaluation
methods”,14 while guideline 4 demands that “effective design-science research
must provide clear contributions in the areas of the design artifact”.15

In guideline 5 he encourages a research rigour by using “rigorous methods
in both the construction and evaluation of the design artifact”.16 Guideline
6 states that design science is a iterative search process. The approach pre-
sented in this thesis makes use of certain assumptions and simplifications,
which may not be realistic enough to make a significant impact on prac-
tice, and can therefore only represent a starting point. Lastly, the presenta-
tion must be understandable for both technology-oriented and management-
oriented audiences, a principle required by the seventh guideline.

Besides those guidelines Wilde and Hess identify methodologies commonly
used in Information Systems Research and Business Informatics.17 Based
on their catalogue this work uses a simulation approach to evaluate a pro-
totypical recommender system.

11. Wilde, T. and Hess, T., Methodenspektrum der Wirtschaftsinformatik: Überblick
und Portfoliobildung, technical report 2 (München: Institut für Wirtschaftsinformatik
und Neue Medien, 2006), p. 3.
12. See Hevner, A. R. et al., “Design science in information systems research,” MIS

Quarterly 28, no. 1 (2004): p. 11-25, issn: 0276-7783, http://www.hec.unil.ch/
ypigneur/HCI/articles/hevner04.pdf.
13. Ibid., p. 12.
14. Ibid.
15. Ibid., p. 23.
16. Ibid., p. 24.
17. Wilde, T. and Hess, T., “Forschungsmethoden der Wirtschaftsinformatik - Eine

empirische Untersuchung,” Wirtschaftsinformatik 49, no. 4 (2007): p. 282.

7
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1.3. STRUCTURE CHAPTER 1. INTRODUCTION

1.3.2 Structure of this thesis

In the following paragraphs is explained how the chapters relate to the de-
sign science paradigm. This thesis aims at improving operational support
by developing a real-time approach to decision optimisation. The motiva-
tion in chapter 1 gives an introduction into the relevance of this topic as a
business problem, and summarises the problem statement.

Chapter 2 explains the knowledge base – the theoretical foundations of the
problem areas. The approach including the assumptions and simplifications
made in this work are introduced in chapter 3. Understanding design science
as iterative approach, those assumptions may not be realistic enough to
make a significant impact on practice, but the approach should represent a
starting point. Additionally, in this chapter performance metrics are listed
to measure the quality of the artifact.

The implementation described in chapter 4 serves as viable design arti-
fact. At the same time, as a novel prototype, this design artifact forms
the core contribution of the research. Together with raw data discussed the
same chapter, it provides a clear and verifiable research contribution. The
evaluation carried out in chapter 5 utilises an experimental approach by
conducting an controlled experiment on real process data.

Together chapters 2 to 5 aim at satisfying the fifth guideline, achieving a
research rigour by justifying why the developed artifact works or does not
work. A conclusion about the findings and possible future work scenarios
are outlined in chapter 6.

In the end, this written work as a whole acts as communication of the
research conducted therein, both for technology-oriented and management-
oriented audiences.

8



Chapter 2

Basic Terminology &
Related Work

The first part of this chapter gives an overview of Business Process Man-
agement associated concepts like the BPM life-cycle, and briefly discusses
potential perspectives on BPM. This overview focuses mostly on the run-
time parts of BPM, where operational decision support can be provided. At
the end process mining techniques are briefly described.

The second part introduces basic definitions and requirements of decision
support. After that, related approaches to operational decision support in
BPM environments are discussed in detail. The result is a classification of
these approaches based on their level of automation and type of support.

At the end a summary of the findings follows along with a description of
limitations and shortcomings of the approaches described before.

2.1 Business Process Management

2.1.1 Basic Terminology

This section introduces the basic terminology used in this thesis. To begin
with the concept of a business process and its relates to information systems
is described. After that a brief overview of the history of BPM follows,
covering the major evolutionary steps.

9



2.1. BPM CHAPTER 2. RELATED WORK

2.1.1.1 Definition of Business Process Management

The concept of BPM is based around business processes. A business process
can be defined as a set of activities “that are performed in coordination in
an organizational and technical environment”.1

Workflow management technology aims at the automated sup-
port and coordination of business processes to reduce cost and
flow times, and increase quality of service and productivity.2

More specifically, WFM refers to the automation of business processes3 in
a rather mechanistic manner.4 A software system implementing the work
flow, a workflow management system, directs the control flow based on
control data while executing processes.5 That is to say, it is responsible for
the (automated) coordination and distribution of concurrent activities and
detection of exceptional situations. BPM can be seen as an extension of
WFM.6

Business Process Management (BPM) is the discipline that com-
bines knowledge from information technology and knowledge
from management sciences and applies this to operational busi-
ness processes.7

Some authors argue that WFM and BPM in practice are used interchange-
ably,8 but for the academic purpose of this work the difference between them
stands. BPM is considered to have a broader scope, since it does not exclu-

1. Weske, M., Business process management: concepts, languages, architectures., 2nd
ed. (Berlin, Heidelberg: Springer Berlin Heidelberg, 2012), p. 5, isbn: 978-3-642-28616-2,
doi:10.1007/978-3-642-28616-2.

2. van der Aalst, W. M. P. and Jablonski, S., “Dealing with workflow change:
identification of issues and solutions,” Computer systems science and engineering 15, no.
5 (2000): p. 267.

3. Jablonski, S. and Bussler, C., Workflow Management: Modeling Concepts, Ar-
chitecture and Implementation (London, UK: International Thomson Computer Press,
1996), p. 7 ff. isbn: 9781850322221.

4. van der Aalst, “Business Process Management: A Comprehensive Survey,” p. 1.
5. Becker, J., Kugeler, M., and Rosemann, M., eds., Prozessmanagement: Ein

Leitfaden zur prozessorientierten Organisationsgestaltung, 7th ed. (Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012), p. 202, isbn: 978-3-642-33843-4, doi:10.1007/978-3-
642-33844-1.

6. van der Aalst, “Business Process Management: A Comprehensive Survey,” p. 1.
7. Ibid.
8. zur Muehlen, M. and Hansmann, H., “Workflowmanagement,” in Prozessman-

agement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 7th ed., ed.
Becker, J., Kugeler, M., and Rosemann, M. (Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012), p. 367, isbn: 978-3-642-33843-4, doi:10.1007/978-3-642-33844-
1\_11.

10

http://dx.doi.org/10.1007/978-3-642-28616-2
http://dx.doi.org/10.1007/978-3-642-33844-1
http://dx.doi.org/10.1007/978-3-642-33844-1
http://dx.doi.org/10.1007/978-3-642-33844-1\_11
http://dx.doi.org/10.1007/978-3-642-33844-1\_11


2.1. BPM CHAPTER 2. RELATED WORK

sively aim at process automation, but also extends this automation into the
area of real-time operational support. To achieve this, BPM utilizes Oper-
ations Research approaches like process analysis. A crucial part of BPM is
the underlying process model. It aims to capture different ways in which
a process instance (a case), can possibly be handled. Such a model can
be expressed in various languages,9 the most commonly used are Business
Process Model and Notation (BPMN), Unified Modeling Language (UML)
and the Extended Event-driven Process Chain (eEPC).10

A type of software that manages, controls and supports operational pro-
cesses is called Business Process Management System. Along with Enter-
prise Resource Planning (ERP) systems and high-level middleware, WFM
and BPM systems are both PAISs. These systems share the characteristic
of an explicit process notation, and the system is aware of its processes.
This enabled the systems to collect structured process data (event logs),
which can later be used for analysis and model enhancements.

2.1.1.2 A Brief History of BPM

Adam Smith (1723-1790) and Frederick Taylor (1856-1915), with their con-
cepts of division of labour and scientific management, are often named as
the early pioneers of BPM, as it is easy to see that these ideas are used in
modern BPM systems.11 The enabling of mass production through assem-
bly lines is deemed another early milestone, which is attributable to Henry
Ford (1863-1947).12

In the following century the rapid development of IT systems, and advances
in the research of modelling languages helped to develop sophisticated BPM

9. For a more comprehensive overview, see Dumas, M., van der Aalst, W. M., and
ter Hofstede, A. H., Process-Aware Information Systems (Hoboken, NJ, 2005), isbn:
9780471663065; zur Muehlen, M., Recker, J., and Indulska, M., “Sometimes Less
is More: Are Process Modeling Languages Overly Complex?,” in The 3rd International
Workshop on Vocabularies, Ontologies and Rules for The Enterprise (IEEE Publishers,
2007)
10. See Meyer, S. et al., “Towards Modeling Real-World Aware Business Processes,”

in Proceedings of the Second International Workshop on Web of Things, June (New York,
NY, USA: ACM, 2011), p. 2, isbn: 9781450306249, doi:10.1145/1993966.1993978.
11. See Davenport, T. H. and Short, J. E., “The New Industrial Engineering: In-

formation Technology and Business Process Redesign,” MIT Sloan Management Review
(Cambridge, MA, USA) 31, no. 4 (1990): p. 1, http://sloanreview.mit.edu/article/
the - new - industrial - engineering - information - technology - and - business -
process- redesign/; van der Aalst, “Business Process Management: A Compre-
hensive Survey,” p. 3.
12. See van der Aalst, “Business Process Management: A Comprehensive Survey,”

p. 3.
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systems. Milestones include the invention of the Turing machine in 1936,
which can be viewed as data-enabled process model; the introduction of
computers in the late 1940s, which started to influence business processes;
and the introduction of Petri Nets in 1962, which is one of the de-facto
standards in mathematical and business process modelling today. The de-
velopment of Database Management Systems started in the 1970s, enabling
the development of Workflow Management Systems in the 1990s, predeces-
sors to today’s integrated Enterprise Resource Planning (ERP) and BPM
systems.13

The complexity of business processes in today’s organisations is ever in-
creasing, with the rise of cross-organisational communication and global
collaboration. To cope with this complexity, process models and BPM sys-
tems are widely used in today’s organisations. This leaves the management
of organisations and the users of BPM systems with a plethora of choices
regarding all aspects of their processes, the creation and management of
them – “BPM is all about making choices”.14

2.1.2 Concepts of BPM

This section introduces the Business Process Life-Cycle, a five-phased ap-
proach to BPM, and the five Perspectives on BPM. At the end, the the key
concerns and use cases of BPM are discussed.

2.1.2.1 Business Process Life-Cycle

Fig. 2.1 shows one of many versions of the Business Process Life-Cycle in
the literature. All life-cycles are based on the same concepts and only differ
in the perspective and/or granularity. The key concepts originate from the
Deming Wheel, an iterative PDCA cycle (plan – do – check – act).15 Such
an iterative cycle can be applied for improvement processes in any area,
including production processes or business processes. The BPM life-cycle
depicted here describes five distinct phases of managing a business process.16

13. van der Aalst, “Business Process Management: A Comprehensive Survey,” pp.
3–4.
14. Ibid., p. 10.
15. Moen, R. and Norman, C., Evolution of the PDCA Cycle, technical report (2006),

1–11.
16. See van der Aalst, Process Mining: Discovery, Conformance and Enhancement

of Business Processes.
17. Wrt. Ibid., p. 8
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Figure 2.1: Five phases of the Business Process Life Cycle.17

The cycle usually starts with a design phase, where a business process
model is originally designed. If this phase is entered in a later iteration, an
existing model is improved instead. Those improvements are guided by the
insights gathered in the preceding diagnosis phase.

The resulting design acts as specification for the following configuration
phase. There, the model is implemented either as a WFM system or into
an already existing system. If the design is already modelled in a language
supported by the WFM, this phase can be completed very quickly. Basic
testing of the process should be carried out in this phase as well. The first
two phases can be referred to as build time.

After the system is running with the implemented design the enactment
phase starts. Here, running processes are monitored to identify any re-
configurations which might be necessary at run-time. Those changes are
made in the adjustment phase, and are not implemented by re-designing
the original model, but rather by utilising existing controls of the running
system. Those phases are usually called run time.

The collected data is analysed in depth in the diagnosis phase. This
allows examination of model weaknesses, resource bottlenecks and any other
problems. Any insights gathered in this diagnosis influence the following
redesign phase, where the model is adapted based on the conclusions drawn
from the observations in the monitoring phase.

As mentioned before, other representations of the BPM life-cycle exist in
the literature. While the presented model contains an adjustment phase,
another representation focusing on the design part might contain a business
process re-engineering phase instead.18 Alternatively, the BPM life-cycle can

18. See Becker, Kugeler, and Rosemann, Prozessmanagement: Ein Leitfaden zur

13



2.1. BPM CHAPTER 2. RELATED WORK

be understood as containing the three main phases design, configuration and
enactment. The diagnosis phase is now decoupled, and can be seen as it’s
own dimension. There model-based analysis is conducted parallel to the
design phase, while data-based analysis happens parallel to the enactment
phase.19 In contrast to seeing the analysis as a separate phase downstream,
this approach has the advantage of integrating the analysis into both build
and run time of the process. Such a view allows the resulting insights to
be used directly for process or model optimisation, without the need to
re-iterate the whole cycle.

2.1.2.2 Five Perspectives on Business Process Management

To gain a comprehensive view on BPM, modern literature differentiates be-
tween five perspectives.20 The control-flow perspective (also referred to
as process perspective) models the ordering of activities and their routing
and control flow. It is often the backbone of a process model. The resource
perspective (also known as organisational perspective) contains roles and
their relations, organisational units and other resources. The data per-
spective (also known as case perspective) contains modelling decisions and
is responsible for data creation. The time perspective is concerned with
timing and frequency of events, as well as modelling durations and dead-
lines. Lastly, the function perspective describes activities and related
application.

2.1.2.3 Key Concerns and Use Cases of BPM

In his recent survey about BPM, van der Aalst identifies six key concerns of
BPM and 20 use cases.21 The following list provides an overview and a short
explanation for each key concern, going into more details where necessary
for this thesis (i.e enactment infrastructures and data-based analysis).

Process Modeling Languages
The choice of a language to represent an organisation’s business pro-

prozessorientierten Organisationsgestaltung , p. 314.
19. See van der Aalst, “Business Process Management: A Comprehensive Survey,”

p. 5.
20. van der Aalst and Jablonski, “Dealing with workflow change: identification of

issues and solutions”; van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes; van der Aalst, “Business Process Management:
A Comprehensive Survey.”
21. van der Aalst, “Business Process Management: A Comprehensive Survey,” pp.

23-28.
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cesses is essential due to the central role of process modeling and
analysis in BPM.22

Process Enactment Infrastructures
The core of any BPM system is a process enactment service. It pro-
vides the run-time environment and is responsible for workflow con-
trol and execution. Process definition tools are used at build time
to specify the workflow process definitions, while administration and
monitoring tools are used to monitor and control the workflows at
run-time. This includes allocating people (or resources) and handling
of exceptions.23

Process Model Analysis
A process model can be analysed in two ways: verification and per-
formance. Verification measures the correctness of a process, while
performance analysis is focused on performance indicators like flow
times, utilisation, etc. Neither approach uses event data, but perform
analysis only using the model. From a management point of view,
performance analysis is more relevant.24

Process Mining
The goal of process mining is to exploit accumulating event data of
an information system in a meaningful way. It can be used to discover
new process models, or to check conformance of an existing model.25

Process Flexibility
The ability to deal with both foreseen and unforeseen changes of the
business environment is called process flexibility.26

Process Reuse
Since organisations adapted BPM in their day-to-day operations, large
process model repositories have accumulated. This leads to problems
maintaining and re-using those models. BPM systems need to ease
the search for models, and their maintenance (e.g. updating models
or merging models).27

For each key concern a couple of use cases have been identified. The follow-
ing paragraph describes the relevant use cases for this thesis: Adapt while
running (adaWR), Monitor (Mon) and Enact model (EnM) in detail.

22. van der Aalst, “Business Process Management: A Comprehensive Survey,” p.
12.
23. Ibid., p. 15.
24. Ibid., p. 19.
25. Ibid., p. 22.
26. Ibid., p. 25.
27. Ibid., p. 26.
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Monitor and Adapt while running and Enact model are located in the pro-
cess execution and belong to the BPM key concern Process Enactment
Infrastructures. Monitor “refers to all measurements done at runtime
without creating or using a model”.28

At runtime, choices may be resolved by human decision making. The use
case adaWR refers to the principle that “BPM is all about making choices”.29

It includes process configuration (adjustment phase), which cares about
selecting a desired behaviour from a family of process variants. This use
case refers to situations where the model is adapted at runtime.

Lastly, Analyze Performance Based on Model can be assigned to the key
concern Process Model Analysis. It is located in the BPM phases con-
figuration and analysis. The use case refers to analyses of expected per-
formance in terms of response times, waiting times, flow times, utilisation,
costs, etc.

2.1.3 Process Mining

Since this work is using process mining techniques to create a process model,
this section allows a closer look into the process mining use case. Process
Mining is a way to exploit existing process data in a meaningful way, for
example to aid process designers with the construction of process models or
to enhance existing models. Process Mining is based on event logs, traces
of the former execution of a business process in an information system.
Event logs can be available in different maturity levels, from poorest qual-
ity (missing events, logged by hand) up to excellent quality (trustworthy,
complete, well-defined). In a typical information system, event logs can be
extracted from transactional data (e.g. a database system) or from logging
traces. However, this approach will usually only lead to data of medium
quality. On the other hand, a PAIS purposefully collects event logs, auto-
matically and in a systematic manner, resulting in much better data.30 Such
structured event logs may store additional information like an timestamp,
information about the resource executing an activity, or other data elements
recorded with the event.

28. van der Aalst, “Business Process Management: A Comprehensive Survey,” p.
10.
29. Ibid., p. 13.
30. IEEE Task Force on Process Mining, “Process Mining Manifesto,” in BPM

2011 International Workshops, ed. Daniel, F., Barkaoui, K., and Dustdar, S. (2012),
p. 7, isbn: 978-3-642-28115-0.
31. ibid., p. 3
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Figure 2.2: Positioning of the three main types of process mining: (a) discovery, (b)
conformance checking, and (c) enhancement.31

Fig. 2.2 shows the three main types of process mining. The first and most
prominent process mining technique is process discovery. Based on a set
of event logs a fitting process model can be produced, e.g. by using the α-
algorithm.32 This type of process mining can be related to the design phase
of the BPM life-cycle.

The second type is conformance checking, which is essentially a target-
performance comparison of process model (target) and reality as captured
in event logs (performance). Conformance checking usually relates to the
diagnosis phase. Lastly, process mining can be used for model enhance-
ment. The idea is to improve an already existing model using event logs
from previous executions. Enhancement is be located in the diagnosis and
re-design phases of the BPM life-cycle.

Process mining covers multiple perspectives on the BPM life-cyle: the
control-flow perspective (by establishing an ordering of activities), the re-
source perspective (by classifying people into roles and organisational units),
the data perspective (paths in the process), and the time perspective (dis-
covery of bottlenecks, predict remaining processing time).

While process mining is mainly used in an offline scenario, it can also be used

32. Cf. van der Aalst, W. M. P., Weijters, T., and Maruster, L., “Workflow
mining: discovering process models from event logs,” IEEE Transactions on Knowledge
and Data Engineering 16, no. 9 (September 2004): pp. 1128-1142, issn: 1041-4347, doi:10.
1109/TKDE.2004.47.
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for operational decision support by considering running cases, i.e. instances
which have not completed yet.33

2.2 Operational Decision Support

2.2.1 Basic Terminology

Before discussing decision support, the underlying decision making process
is examined. To begin with, human information processing is described
with the help of a simplified model, and potentials for improvement are
identified based on the attention and resource theories. Then, decision
support systems are discussed and a classification in levels of automation is
introduced.

2.2.1.1 What is Decision Making?

A sub-field of cognitive psychology is concerned with the systematic analysis
of the human decision making process. To understand human decision mak-
ing, a holistic view on human information processing is necessary. Fig. 2.3
(overleaf) depicts the four distinct steps of human information processing
according to Parasuraman et al.34 This model only acts as a gross simplifica-
tion, since most tasks involve inter-dependent stages and are often executed
concurrently. However, this simplification allows the direct translation of
these stages into system functions, which can be automated: information
acquisition, information analysis, decision and action selection, and action
implementation.35

The first step is sensory processing of a particular item of information – gain-
ing awareness of the information. This stage includes initial pre-processing
of data prior to full perception. After that the information resides in the
working memory, allowing for conscious perception and manipulation of the

33. van der Aalst, W. M. P., Pesic, M., and Song, M., “Beyond Process Mining:
From the Past to Present and Future,” in 22nd International Conference on Advanced In-
formation Systems Engineering (Hammamet, Tunisia: Springer Berlin Heidelberg, 2010),
p. 2, doi:10.1007/978-3-642-13094-6\_5.
34. Parasuraman, R., Sheridan, T. B., and Wickens, C. D., “A model for types

and levels of human interaction with automation.,” IEEE transactions on systems, man,
and cybernetics. Part A, Systems and humans 30, no. 3 (May 2000): pp. 287 f. issn:
1083-4427.
35. Ibid., p. 288.
36. ibid., p. 287.
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Figure 2.3: Four stage Model of human information processing: (a) sensory processing,
(b) perception, (c) decision making, and (d) response selection (adapted version).36

information. The third stage acts as point of decision, where a conscious
decision is made based on the previous cognitive processing. Consequently,
an appropriate response or action consistent to this decision is selected.37

However, not all information is deemed important enough by the mind, and
might be discarded as unimportant before reaching the conscious decision
making phase (e.g. when hearing a familiar sound, a person usually does
not direct their attention towards it). To make an efficient and informed
decision, the information first has to pass this perception filter. This cogni-
tive process is called attention, and it refers to selectively concentrating on
one aspect of the environment while ignoring others.38

Both Davenport and Beck, and Sternberg and Sternberg argue that any in-
formation input requires some of our limited-capacity attentional resources.39

In cognitive psychology, this is called resource theory. Although humans are
able to automate certain tasks so that they require less resources, this mainly
applies to repetitive tasks. Because “organizational attention involves rich,
parallel processes”, managers confronted with decision tasks usually are not
able to automate those while maintaining good decision quality.40

2.2.1.2 Decision Support Systems

Management Information Systems (MISs) and Decision Support Systems
(DSSs) are (semi-)automated systems supporting managers in their semi-
structured or unstructured decision making activities.41 This relates to the
management perspective introduced in section 1.1.1, which describes a global

37. Parasuraman, Sheridan, and Wickens, “A model for types and levels of human
interaction with automation.,” p. 287.
38. Anderson, J. R., Cognitive Psychology and Its Implications, 6th ed. (Worth Pub-

lishers, 2004), p. 519, isbn: 978-0716701101.
39. Davenport and Beck, The attention economy: understanding the new currency

of business, pp. 10-50; Sternberg, R. J. and Sternberg, K., Cognitive Psychology,
6th ed. (Cengage Learning, 2011), isbn: 978-1133313915.
40. Cf. Davenport and Beck, The attention economy: understanding the new cur-

rency of business.
41. See Eom, S. B. et al., “A Survey of Decision Support System Applications (1988-

1994),” The Journal of Operational Research Society 49, no. 2 (1998): pp. 1 ff.
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perspective on all running processes. DSSs do not aim to replace the human
user, but merely supporting them in their decisions.

Considering the human attention restrictions described in the last section,
a DSS should pre-filter information to avoid an information overflow, and
direct the user to relevant items of information, i.e. only those which require
human attention. Additionally, DSSs can support the user in the actual
decision task, by providing a selection of recommended means of action.42

This helps mitigating the pattern matching trap, in which a users decisions
are led by wrong conclusions drawn from experiences in the past.

2.2.1.3 Levels of Automation

Automated systems can be classified into one of the ten levels of automation
depicted in Fig. 2.4 (overleaf). Automation “refers to the full or partial
replacement of a function previously carried out by the human operator.”43

This implies that there are various levels of automation on which automated
systems can operate.

Depending on three risk factors, an assessment for a desired level of automa-
tion can be made. The primary evaluative criteria are human performance
consequences, a system and its human operators should offer a higher per-
formance after implementing automation. This includes factors like mental
workload, situation awareness, complacency and skill degradation.44

A secondary evaluative criteria is automation reliability, since the operators
mental workload will only benefit when the automation is reliable. Another
secondary criteria is the cost of decisions, mostly relevant in the case of an
incorrect or inappropriate action. This risk associated with an erroneous
decision D can be approximated as cost of an error multiplied by the prob-
ability of that error: risk(D) = cost(D) ∗ P (D). Such decisions with a
low risk are strong candidates for high-level automation. In fact, such an
automation can prevent humans from being overloaded, so that instead of
concentrating on simple decisions, they can carry out other, more important
functions.46

42. Hoch and Schkade, “Psychological Approach Support to Decision Systems.”
43. Parasuraman, Sheridan, and Wickens, “A model for types and levels of human

interaction with automation.,” p. 287.
44. Ibid., p. 291.
45. ibid., p. 287.
46. Ibid., p. 292.
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Figure 2.4: Levels of automation of decision and action selection. 45

2.2.2 Decision Support in BPM Environments

Operational support in BPM consists of three dimensions: Detection, pre-
diction and recommendation.47 Its goal should be to “provide directions and
guidance rather than enforcing a particular route.”48

The requirement for operational support in those three dimensions is com-
prehensive process monitoring to enable data-based analysis parallel to the
process execution. The first part of this section introduces the concept of
process monitoring, and possible performance dimensions to be able to iden-
tify problematic cases. After that various process analysis techniques, and
prediction and recommender algorithms stemming from machine learning
are discussed.

Two notable architectures for real-time operational support in BPM envi-
ronments have been proposed. The first is a generic implementation sup-
porting prediction, time-based conformance checking and time-based rec-
ommendations. It is based on process mining and utilises an annotated
transition system for its support functionality. A prototype based on this
architecture was implemented in ProM.49 The second is a theoretical archi-
tecture for real-time decision support, which can utilise either discrete event

47. van der Aalst, Pesic, and Song, “Beyond Process Mining: From the Past to
Present and Future,” p. 41.
48. van der Aalst, W. M. P., “TomTom for Business Process Management (Tom-

Tom4BPM),” in Advanced Information Systems Engineering, ed. Eck, P. van, Gordijn,
J., and Wieringa, R., Lecture Notes in Computer Science (Springer Berlin Heidelberg,
2009), p. 3, isbn: 978-3-642-02143-5, doi:10.1007/978-3-642-02144-2\_2.
49. van der Aalst, Pesic, and Song, “Beyond Process Mining: From the Past to

Present and Future,” p. 43.
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simulation or analytic tools for its decision support.50

In a BPM environment decision support can be provided in regard to the
process flow or a concrete decision task. The underlying process model
provides a structured environment, where possible paths and actions are
known for any given point. This is called the decision space.51

2.2.2.1 Process Monitoring

The requirement for any automated real-time decision making is Process
Monitoring. It is one of the five distinct phases of BPM, and its goal is
to provide real time information about the status of a business process.
Generally, this enables an organisation to make well-informed business de-
cisions. Recently it has been also known as Business Activity Monitoring,
and earlier approaches in WFM used the term operative process controlling
or workflow monitoring.52

In WFM the monitoring is responsible for generating exception reports, e.g.
for potentially overdue items in a production process, and for generating
status reports. Also it collects audit logs (security-relevant record) and
process logs (event logs). Fig. 2.5 shows the division in technical and
organisational monitoring. Technical monitoring is used for performance
measurements, e.g. system response time and system load. Organisational
monitoring measures efficiency, e.g. idle times or workload.53

To quantify those terms, measurable (key) performance indicators (KPIs)
have been introduced. Based on these indicators a degree of performance
for business-specific critical success factors can be identified at any given
time. Modern BPM systems usually display information about the current
KPIs in a graphical interface.54

50. Fritzsche, M. et al., “Extending BPM Environments of Your Choice with Perfor-
mance Related Decision Support,” in Business Process Management, ed. Dayal, U. et
al., Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg,
2009), pp. 97 ff. isbn: 978-3-642-03847-1, doi:10.1007/978-3-642-03848-8\_8.
51. Vanderfeesten, I., Reijers, H. A., and van der Aalst, W. M. P., “Product-

based workflow support,” Information Systems 36, no. 2 (April 2011): p. 529, issn:
03064379, doi:10.1016/j.is.2010.09.008.
52. zur Muehlen, M. and Rosemann, M., “Workflow-based Process Monitoring and

Controlling - Technical and Organizational Issues,” in 33rd Hawaii International Confer-
ence on System Sciences, c (2000), pp. 1 f. isbn: 0769504930.
53. Ibid., p. 2.
54. Dahanayake, A., Welke, R. J., and Cavalheiro, G., “Improving the under-

standing of BAM technology for real-time decision support,” International Journal of
Business Information Systems 7, no. 1 (2011): p. 11, doi:10.1504/IJBIS.2011.037294.
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Figure 2.5: Operative process controlling in the enactment phase separated in: (a) Tech-
nical Monitoring, and (b) Organizational Monitoring (own illustration).

Typically, three dimensions of performance can be identified: time, cost
and quality.55 Table 2.1 (overleaf) lists possible KPIs for each dimension.
In the time dimension, lead time (or flow time) denotes the total time from
creation of a case to its completion. When calculating the lead time, the
degree of variance may also be important. Service time is the time actually
spent working on a case, this can be measured per activity or per case. The
waiting time (or idle time) sums any time span the case is waiting for a
resource to become available, again this can be measured per activity or
per case. Synchronization time is relevant for cases with external triggers
or concurrent activities. It counts the time span a case spends in a partially
enabled state.

To derive cost performance indicators, various costing models from the ap-
plication of Accounting and Controlling can be used. For example, Activity-
Based Costing (ABC), which assigns costs to products and services based on
their consumption of each activity. Time-Driven ABC extends this concept
into the time dimension, while Resource Consumption Accounting (RSA) of-
fers a complex, modern solution to providing cost-based decision support
information for managers. The key component of cost-based performance
measurement often is the average resource utilisation.

The quality dimension focuses on the service delivered to the customer.
Questionnaires can directly measure subjective customer satisfaction, while

55. van der Aalst, “Business Process Management: A Comprehensive Survey,” p. 20
f.
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indirect indicators such as complaints per case or total number of defect
products also help to measure performance in this dimension.

Time Cost Quality

Lead time Activity-Based Costing
(ABC)

Customer satisfaction

Service time Time-Driven ABC Avg. number of com-
plaints (per case)

Waiting time Resource Consumption
Accounting (RCA)

Number of product de-
fects

Synchronization time Average resource utilisa-
tion

Table 2.1: Examples of performance indicator in the three dimensions of performance:
(a) time, (b) cost, and (c) quality

2.2.2.2 Business Process Simulation

Having established performance dimensions and concrete indicators to mea-
sure in the monitoring phase, analysis is required to draw conclusions based
on the collected data. Traditionally analysis was seen as a separate phase
in the BPM life-cycle after the process execution, but more recent mod-
els integrate the diagnosis into the execution phase as data-based analysis
(cf. previous sections). This has enabled real-time support systems, which
utilise such data directly.

In contrast to analytic methods used in the Business Intelligence (BI) field,
Business Process Simulation (BPS) is an alternative approach to analyse
business processes and their data. The idea is to run a process repeat-
edly and to collect information about performance indicators in each run,
resulting in confidence intervals for the indicators. To run a simulation,
several types of information are necessary. First of all, a workflow model
of the process defines the ordering of tasks, associated resources, basically
the general structure of the process. To control the simulation, addition-
ally a simulation environment is necessary. In real-life a PAIS interacts
directly with the model, while in a simulation scenario such a system is not
available. The behavioural characteristics of the simulation environment
includes specifications of external events like the arrival of new cases, and
attributes determining the service time of tasks. Those characteristics are
defined in the form of probability distributions, which should reflect the
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real-life distributions as good as possible. In general, simulation tries to
abstract the details of the business processes, and to replace them by such
stochastic distributions. Finally, the simulation needs to respect real-time
constraints like number of resources and their availability. Such a steady-
state simulation is aimed at finding long-term trends and the initial state
of a system is of no importance.56

Traditional simulation approaches are only connected indirectly with the
PAIS they originate from, and are used for helping with business process
re-engineering or design by providing what-if views on a process model. Van
der Aalst et al. propose the concept of advanced simulation, which aims to
directly connect PAIS and simulation. This allows real-time simulation
by taking into account the current state of a process and historic data
collected for the process. This kind of transient-state simulation typically is
aims to discover short-term developments and can be used for operational
decision support by simulating the outcome of all possible decisions at a
given point.57

A common approach to simulating business processes is to use Discrete
Event Simulation (DES). It models the operation of a system as a time-
ordered sequence of events. The complete sequence describes the entire
experience of an entity as it flows through the simulation.58 This is very
similar to the workflow-based perspective of business processes, and thus
the business process model can be directly translated into an appropriate
simulation model. Each entity in the system has its own state and can carry
information.

In contrast to continuous simulation – which breaks up the time into small
slices and updates the system state according to all activities occurred in
each slice – discrete-event simulation can run faster, since it can jump from
event to event and does not have to consider the time frame in between.

56. van der Aalst, W. M. P. et al., “Business Process Simulation: How to get it
right?,” in Handbook on Business Process Management, ed. vom Brocke, J. and Rose-
mann, M., International Handbooks on Information Systems (Berlin: Springer, 2010),
pp. 2–3.
57. Rozinat, A. et al., “Workflow Simulation for Operational Decision Support,” Data

& Knowledge Engineering 68, no. 9 (2008): p. 837.
58. Hlupic, V. and Robinson, S., “Business process modelling and analysis using

discrete-event simulation,” in Proceedings of the 30th conference on Winter simulation
(Los Alamitos, CA, USA: IEEE Computer Society, 1998), p. 1365.
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2.2.2.3 Machine Learning

Both machine learning and data mining provide useful methods to process
information. Machine learning can be defined as “the study of data-driven
methods capable of mimicking, understanding and aiding human [. . . ] in-
formation processing tasks.”59 Data mining is the application of machine
learning methods to large and complex data sets aimed at discovering and
explaining new, previously unknown insights and relations.60

Machine learning algorithms use example data or past experience to produce
either predictive or descriptive knowledge. Three types of methods can be
distinguished: supervised learning, reinforced learning and unsupervised
learning. The common factor between all methods is that given a set of
input variables X some output value Y is generated.

In supervised learning the task is to learn the mapping from X to Y based
on the input data set. Here, the input data set contains the correct output
values for all samples (labeled data). Supervised learning methods usually
utilise regression models to approximate a good mapping.61 In the context
of supervised learning, the input vector is often called predictor value and
the output data target value. An example is the prediction of sales numbers
for the future based on historic data.

Reinforced learning is used for problems where an outcome depends on a
sequence of actions. Here no concrete input-output pairs are provided for
learning, but instead the learning problem often requires exploration mech-
anisms.62 The algorithm only learns based on the quality of the outcome,
for example a game of chess can be described as such a problem; each move
seen independently might not be very meaningful, but the sequence of moves
decides about winning or losing the game.63

In unsupervised learning the goal is to find regularities in the input data,
and hence no concrete output data is available (unlabeled data). Unsuper-
vised learning is closely related to density estimation in statistics. Cluster
algorithms can be used to perform unsupervised learning, e.g. to group
customers in a (possibly previously unknown) group of similar customers.64

59. Barber, D., Bayesian Reasoning and Machine Learning (Cambridge University
Press, 2012), p. III, isbn: 9780521518147.
60. Alpaydin, E., Introduction to Machine Learning, 2nd ed., ed. Dietterich, T. et

al., Adaptive Computation and Machine Learning (Cambridge, MA, USA: MIT Press,
2010), p. 2, isbn: 9780262012430.
61. Ibid., pp. 9 ff.
62. Barber, Bayesian Reasoning and Machine Learning , pp. 144 f.
63. Alpaydin, Introduction to Machine Learning , pp. 13 f.
64. Ibid., pp. 11 f.
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The complexity and computation time of learning algorithms usually de-
pends on the dimension of the input and the size of the data set used for
training the algorithm. A smaller number of input features also can lead
to simpler models, which should always be preferred over a more complex
solution (cf. Occam’s razor). Thus a reduction of the input dimensionality
is desirable in a real-time scenario. Such a reduction can be achieved by
feature selection or feature extraction. The selection of features aims at
reducing the dimensionality by discarding the uninformative, and therefore
for the output less important, input variables. Feature extraction aims at
finding a combination of the original input features with a reduced dimen-
sionality still containing the same level of information. A method which
can be used for such a feature extraction is the Principal Component Anal-
ysis (PCA).65

2.2.3 Related Approaches

2.2.3.1 Overview of Approaches

Previous approaches to real-time decision making support can be grouped
into two sorts, Prediction and Recommendation or a combination thereof.
All approaches utilise partial traces, i.e. logs of process instances which are
still running, and are located in the combined enactment and data-based
analysis phase of the BPM life-cycle.

A naive approach to prediction would be using simple heuristics like average-
based estimation, where the remaining cycle time is estimated as the average
cycle time minus the already spent time.66 Using this approach on attributes
with a high variance naturally leads to bad predictions. Therefore, a naive
approach is only suitable as a baseline to compare against.

Van Dongen et al. use non-parametric regression to predict the total cycle
time of a case. Their approach also estimates which activities will be exe-
cuted in the future flow.67 It outperforms the naive approach and could be
further improved by including case-specific data. However, deciding which
type of variable to use for those data attributes cannot easily be automated

65. Alpaydin, Introduction to Machine Learning , p. 110.
66. van Dongen, B. F., Crooy, R. A., and van der Aalst, W. M. P., “Cycle Time

Prediction: When Will This Case Finally Be Finished?,” in Proceedings of the OTM 2008
Confederated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008.
Part I on On the Move to Meaningful Internet Systems, Lecture Notes in Computer
Science (Berlin, Heidelberg: Springer Berlin Heidelberg, 2008), p. 5.
67. Ibid.
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since it typically requires insights into the process and its semantics.68 More
details on such regression-based approaches are presented by Crooy..69

Figure 2.6: Two-step prediction approach by deriving a transition system and using a
prediction engine. 70

The same goal of predicting cycle time is pursued by van der Aalst et al., but
with a different approach as depicted in Fig. 2.6. Here a two-step approach
is taken by firstly constructing an explicit process model in the form of an
annotated transition system with an adjustable degree of abstraction. This
model is then used for predictions. This approach outperforms previous
approaches based on simulation or regression, both in terms of quality and
computation time.71

Another approach for giving predictions is short-term simulation. Based
on design information (process model), state information (current real-time
state) and historic information a simulation model in form of a colored petri
net can be built. This enables the automatic creation of simulation models,
allowing for a direct coupling of real process to simulation. With this model,
a short-time simulation system for operational decision support as shown
in Fig. 2.7 is feasible.72

Schonenberg et al. introduce a recommendation approach aimed at provid-
ing more process flexibility at run-time. It offers support based on historic
data (earlier experiences), but does not limit the user by only allowing a
static control flow like many traditional workflow systems do. The approach

68. van Dongen, Crooy, and van der Aalst, “Cycle Time Prediction: When Will
This Case Finally Be Finished?,” p. 18.
69. Crooy, R., “Predictions in Information Systems: a process mining perspective.”

(Master Thesis, Technische Universiteit Eindhoven, 2008), pp. 17-39.
70. van der Aalst, W. M. P., Schonenberg, M., and Song, M., “Time Prediction

Based on Process Mining,” Information Systems 36, no. 2 (2011): p. 2, doi:10.1016/j.
is.2010.09.001.
71. Ibid., pp. 30 f.
72. Rozinat et al., “Workflow Simulation for Operational Decision Support.”
73. ibid., p. 2.

28

http://dx.doi.org/10.1016/j.is.2010.09.001
http://dx.doi.org/10.1016/j.is.2010.09.001


2.2. OPERATIONS SUPPORT CHAPTER 2. RELATED WORK

Figure 2.7: Short-term simulation service approach.73

is based on an abstraction mechanism to compare current partial cases with
earlier executions, and a target function which is optimised. Fig. 2.8 (over-
leaf) shows the architecture of this approach. Their evaluation is based
on the assumption that the user’s goal is to minimise cycle time, and is
conducted in a controlled experiment. But their approach supports other
target functions as well, basically any other performance indicator can be
optimised. Results indicate that traces with recommendation support of-
ten outperform traces without such support, showing the value of historic
information.74

Figure 2.8: Recommendation service approach.75

74. Schonenberg, H. et al., “Supporting Flexible Processes Through Recommenda-
tions Based on History,” in Business Process Management, ed. Dumas, M., Reichert,
M., and Shan, M., Lecture Notes in Computer Science (Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008), p. 15, isbn: 978-3-540-85757-0, doi:10.1007/978- 3- 540-
85758-7\_7.
75. ibid., p. 3.
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A recommendation approach in product-based workflow design is presented
by Vanderfeesten et al. They introduce recommendation strategies for work-
flow products, informational productions like decisions. Information pro-
cessed in the workflow is described by data elements, for each case having a
different value. Actions on data elements are modelled as operations, defin-
ing input and output elements. Additionally, operations can have a number
of attributes like execution cost, processing time or failure probability.76

The authors present a global decision strategy based on Markov Decision
Processes (MDPs), basically a Markov chain extended with actions (for al-
lowing choice) and rewards. This approach is guaranteed to find an optimal
solution, but like other analytic solutions it needs to calculate the full state
space to find the solution – a problem also known as state space explosion
problem.77 Since this is neither feasible for big processes nor at run-time, it
only acts as benchmark strategy for local recommendation strategies. Lo-
cal strategies are heuristics only considering the currently available set of
decisions at any point in the process. A possible naive strategy is a ran-
dom selection, other strategies are lowest cost, lowest failure probability,
etc. These strategies can be combined, executed sequentially or weighted.
The evaluation has shown that heuristics come close to the optimal solution
calculated by MDPs. A shortcoming of the approach is the exclusive con-
sideration of cases in isolation, optimisation on process level or concurrent
processes is not supported.78

Conforti et al. propose an approach for history-aware real-time risk de-
tection,79 and risk-aware prediction and recommendation.80 They identify
three fault types for a use case, and provide decision support for risk re-
duction by predicting the most likely fault severity for each choice. Their
approach supports three performance dimensions: time, cost and reputa-
tion. Based on the prediction, they recommend the best course of action.
By utilising a decision tree trained on historical process data they were able

76. Vanderfeesten, Reijers, and van der Aalst, “Product-based workflow sup-
port,” pp. 4-7.
77. Fritzsche et al., “Extending BPM Environments of Your Choice with Performance

Related Decision Support,” p. 100.
78. Vanderfeesten, Reijers, and van der Aalst, “Product-based workflow sup-

port,” pp. 32.
79. Conforti, R. et al., “History-Aware, Real-Time Risk Detection in Business Pro-

cesses,” in On the Move to Meaningful Internet Systems: OTM 2011, ed. Meersman, R.
et al., Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg,
2011), pp. 100 f. isbn: 978-3-642-25108-5, doi:10.1007/978-3-642-25109-2\_8.
80. Conforti, R. et al., “Supporting Risk-Informed Decisions during Business Process

Execution,” in Advanced Information Systems Engineering, ed. Salinesi, C., Norrie,
M. C., and Pastor, Ó., Lecture Notes in Computer Science (Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013), pp. 116 f. isbn: 978-3-642-38708-1, doi:10.1007/978-3-642-
38709-8\_8.

30

http://dx.doi.org/10.1007/978-3-642-25109-2\_8
http://dx.doi.org/10.1007/978-3-642-38709-8\_8
http://dx.doi.org/10.1007/978-3-642-38709-8\_8


2.2. OPERATIONS SUPPORT CHAPTER 2. RELATED WORK

to significantly reduce the overall severity and number of faults.81

2.2.3.2 Classification of Approaches

The approaches discussed in the last section all are based on the common
ground of providing support on the operational level, i.e. in real-time. To
achieve such a support, they use partial traces, which either are used to
classify a case, or predict a target attribute. This target attribute may be
flexible, e.g. by using a target function. However, for their evaluation all
approaches concentrate on a single target attribute.

Additionally the approaches can be be classified by their type (prediction,
recommendation or combination thereof) and the level of automation they
provide. Determining this level is not always easy, since some of the ap-
proaches do not present an integrated system but only algorithmic basics.
This means that the level of automation in most cases could still be in-
creased. The pure recommendation approaches already use a higher level of
automation, since they pre-filter possible selections for the user. Table 2.2
(overleaf) shows an overview of the approaches and their respective classi-
fication. The naive approach only describes basic algorithms and therefore
has no automation level.

81. Conforti et al., “Supporting Risk-Informed Decisions during Business Process
Execution,” p. 14.
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Approach Model Target at-
tribute

Type Level of
Automa-
tion

naive Mean Average Lead time Prediction –

Van Dongen et al.
(2008) and Crooy
(2008)

Non-parametric
regression

Lead time Prediction 2

Van der Aalst et al.
(2011)

Model-based
prediction

Lead time Prediction 2

Schonenberg et al.
(2008)

Top-N recom-
mender

Lead time Recommendation 3

Rozinat et al.
(2008)

Short-term simu-
lation

Lead time and
no. of cases

Prediction 2

Vanderfeesten et
al. (2011)

Markov Deci-
sion Processes
and Top-N
recommender

Total costs Recommendation 4

Conforti et al.
(2011) and Con-
forti et al. (2013)

Decision Tree Risk severity Prediction and
Recommenda-
tion

2

Table 2.2: Classification of real-time decision support approaches in BPM environments.
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2.3 Findings

This chapter has described the requirements for operational decision sup-
port in BPM, and discussed various approaches to giving predictions and
recommendations at real-time. In all approaches, the key factor is the direct
communication between the enactment engine which controls and monitors
the workflow, the recommendation service and the event log database which
stores historical event data. While these data sources have previously been
used separately or for off-line analysis, e.g. in rule-based detection engines
or for process re-design, the combination of these data sources enables oper-
ational decision support. Furthermore, an underlying process model helps
by structuring the decision space, so that supervised learning algorithms
can be used.

All approaches lack a view on the global process level, i.e. they ignore com-
peting cases, global resource availability and other external factors which
influence the process execution. Furthermore, decision support systems
have to consider multiple performance indicators, since an isolated optimi-
sation of process criteria easily leads to a biased optimisation.82 To avoid
such a biased view, the process quality needs to be measured in terms of
multiple KPIs coming from all performance dimensions, weighted by their
importance for the analyst and the use case.

82. zur Muehlen and Rosemann, “Workflow-based Process Monitoring and Control-
ling - Technical and Organizational Issues,” p. 4.
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Chapter 3

Approach

An analysis of related approaches regarding operational decision support
systems in BPM environments has shown that such a scenario is both tech-
nically feasible and can be beneficial for process quality.

Shortcomings of existing approaches include the inability to automatically
chose meaningful features, and the exclusive concentration on case-related
data. The application of established data mining algorithms in an inte-
grated BPM system in an automated fashion requires the extraction of
relevant features from the event logs stored by the business process execu-
tion system. The more data those traces contain, the harder it is to select
relevant features. To tackle this issue, this thesis introduces an extraction
strategy based on weighted performance indicators fully configurable by the
user. The utilisation of real event logs instead of sample data sets helps to
develop a solution which can be integrated into a real BPM environment.

Furthermore, the approach pursued in this thesis aims to evaluate whether
a broader perspective, such as the management view introduced in Chapter
1 (also referred to as a global process view) can help to improve the recom-
mendation quality of decision support systems in the operational business
process execution phase. In this chapter a set of global features is defined,
which later on are included in the data set used for the training of the
learning algorithms.

The current approach is clearly placed within the enactment phase of the
BPM life-cycle as it touches both execution of the process and real-time
enabled data-based diagnosis. The primary goal is to highlight problematic
process instances at run-time. Problematic instances are instances which
need attention to meet some generic, configurable performance score. The
secondary goal is to provide meaningful recommendations on a course of
action to mitigate the arising problems for such instances.
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Chapter 4 describes the implementation of the approach, from selecting a
suitable real-life data set to the architecture used for the experiments. The
analysis of results in Chapter 5 compares the quality of business process
executions regarding some key performance indicators of recommendation-
aided and unaided business executions. This shows whether the approach
presented in this chapter actually improves the performance indicators, and
if so how the consideration of global variables change the recommendation
quality.

3.1 Requirements

Based on the analysis of related work conducted in the last chapter, some
requirements for an operational decision support system can be identified.
They mainly concern the interoperability of decision support systems with
existing BPM solutions and the data sources used for training.

Integration By developing a solution with clearly defined interfaces, it
can be used in existing BPM systems. The approach should be able
to handle event logs in a standardised format like eXtensible Event
Stream (XES), which allows the communication with existing systems
and the analysis of the results with established tools.

Data The approach should utilise four data classes:

Design data in form of a process model.

Case data in form of partial log traces of running process instances.

Historical data in form of event logs of previous process executions.

Contextual data in form of global attributes like resource utilisa-
tion, active cases, etc.

3.2 Feature Extraction

Data can originate from a variety of sources. This section discusses various
data sources such as event logs or process models, and the features which
can be extracted from them.
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Figure 3.1: Structure of a Process Log. A log contains traces, and a trace contains a
sequence of events. (own illustration).

3.2.1 Data Sources

In a BPM system, information about its process instances is often avail-
able as a process log. Fig. 3.1 shows the structure of a process log. A
log contains information about all completed and running process instances
(cases). Each instance can be represented as a trace, which consists of a
time-ordered sequence of events. Events describe all activities a case has en-
countered in its life time. All these entities can have additional information
in the form of arbitrary properties. Table 3.1 (below) shows an example
event log.

Several standards to represent a process log have been proposed. One
generally-acknowledged standard is XES, an XML-based standard for event
logs. Here some commonly used attributes have been standardised, e.g.
IDs, time stamps, and life-cycle phases.1

Case ID Event ID Timestamp Activity Resource

1 56432 2014-03-10
00:38:44.54

Submit request Customer
#124

1 56433 2014-03-10
08:31:22.12

Decline request John

2 56439 2014-03-11
11:15:00.85

Submit request Customer
#21

2 56440 2014-03-11
11:25:58.71

Answer request
(START)

Peter

2 56441 2014-03-11
11:28:29.33

Answer request
(COMPLETE)

Peter

Table 3.1: A part of an event log.

Formally an event can be defined as e, and characterised by its attributes

1. Günther, C. W. and Verbeek, E., Extensible Event Stream (XES): Standard
Definition v2.0, 2014, accessed May 1, 2014, http://www.xes-standard.org/.
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#n(e). Here, n denotes the attribute’s name, e.g. for the standard exten-
sions the time stamp would be defined as#time(e), the activity as#activity(e),
the life cycle transition as #trans(e) and the resource as #resource(e). Cases
are handled analogously to events, they are defined as c and also can have
attributes #n(c). One special attribute of a case is its trace ĉ = #trace(c), a
finite sequence of events recorded for the trace. Each case and event has a
unique ID. A complete log is defined as L. With these definitions the thesis
follows the formalisation standard proposed by Van der Aalst.2

In the example given in Table 3.1 the trace of case 1 is defined as 1̂ =
#trace(1) = 〈56432, 56433〉.

A complete event log acts as a source for historical data, while a (partial)
trace acts as a source for case data. Many features and performance indi-
cators can be extracted from an event log, as discussed in detail in the next
section. Such kinds of data are necessary to detect problematic instances
at run time and to predict the performance of a case.

Design data is necessary to give meaningful recommendations. If a process
model is provided, it can provide the decision space for a location within
the model. The decision space contains all activities which can be legally
performed at a given time (legally in respect to the process model). If
no process model is provided, it can be mined from historical event data.
This often needs manual post-processing to yield in an usable model for a
recommendation scenario.

Contextual data or global data has to be provided by the respective BPM
system or other external sources. This information can be used to improve
detection, predictions and recommendations.

3.2.2 Performance Indicators

The features extracted from the log and the environment can be used as
performance indicators either as-is or as in combination. The three perfor-
mance dimensions (cost, time, and quality) presented in the last chapter
are considered to be conflicting goals. While one can strive to achieve a
perfect quality, usually only one other dimension can be fulfilled as well,
e.g. achieving a short time-frame, consequently leading to high costs.

In project management, the triple constraint or magic triangle as visualised
in Fig. 3.2, represents this conflicting relationship between the three goals

2. van der Aalst, “Business Process Management: A Comprehensive Survey,” pp.
98–106.
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Figure 3.2: The Magic Triangle (adapted version).3

of cost, time and quality optimisation.4 This relationship does not only
hold true in project management, but is reflected in the basics of applied
economics.

Even if monitoring performance indicators of all dimensions, it is often only
possible to optimise a decision for one or two of the goals. Thus a trade-
off between dimensions has to be made. This can be achieved by either
only considering one dimension at a time, or by weighting the dimensions
according to a desired outcome. Additionally a risk estimation can help to
judge the importance of one dimension at any time.

Usually Key Performance Indicators (KPIs) are defined as performance in-
dicators highly relevant to the success of an organisation. In this approach,
a KPI is defined as an arbitrary combination of performance indicators. The
weights of the combination can either be user-defined or automatically cre-
ated, and can be adapted on-the-fly. With this approach, relevant KPIs can
be constructed automatically by analysing the input features and outcomes.

3. Wrt. Broy, M. and Kuhrmann, M., Projektorganisation und Management
im Software Engineering, Xpert.press (Springer Berlin Heidelberg, 2013), p. 5, isbn:
9783642292897, doi:10.1007/978-3-642-29290-3

4. Hofmann, M., Performance-orientiertes Projektmanagement: Konzeption zum
Umgang mit einmaligen, komplexen Aufgaben, Unternehmensführung & Controlling
(Springer Fachmedien Wiesbaden, 2014), p. 31, isbn: 9783658047986, doi:10.1007/978-
3-658-04799-3.
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3.3 Decision Support

Decision support in BPM has three dimensions: Detection, Prediction and
Recommendation. They are partly dependant on each other, i.e. to give a
good recommendation detection and prediction methods can be used.

Business processes themselves can be seen as directed graphs and are of-
ten modelled as such. They can be interpreted as Markov Decision Pro-
cesses (MDPs), where outcomes are partly random and partly under the
control of a decision maker. MDPs extend Markov Chains by modelling
possible decisions for each state as actions and by adding rewards for the
transitions. The respective state transition function depends only on the
current state and the action, so that the Markov property holds true. This
means it is a memoryless process, and outcomes are independent from pre-
vious decisions. By constructing a structure holding all possible states of
the process, an optimal solution can be found for MDPs. However, for
complex processes this is not feasible due to the state space explosion prob-
lem, which results from the exponential growth of the state space with the
process size. Furthermore, it is questionable whether the Markov property
holds true in reality, i.e. whether states in a real business process can be
considered memoryless.

Hence, the approach taken in this thesis uses machine learning methods
instead to give predictions and recommendations. Such learning algorithms
can utilise the raw features, the resulting performance indicators and the
KPIs as defined in the last section. As outlined in Chapter 2, there are
three categories of algorithms; supervised learning, reinforced learning and
unsupervised learning algorithms.

For this approach supervised learning was chosen due to the well-defined
features presented in the last section. This means that a target value can be
any feature or performance indicator, or even a combination thereof. The
only restriction is that the target variables have to be known in the learning
phase.

3.3.1 Predictor and target variables

In machine learning, predictor variables are used to predict a target variable.
Table 3.2 (overleaf) summarises the available types of data at run-time.
Based on those types predictor and target variables can be extracted.

This section discusses the extraction of generic indicators, which should be
applicable to any event log. With just a plain event log, case-based data
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Case-based data Historic data Design data Contextual data

Custom trace data,
e.g. customer infor-
mation

Lead time Process Model Number of open
cases

Number of events Service time Decision Space Resource utilisa-
tion

Number and length
of loops

Wait time Weekday

Table 3.2: Examples of available information at run-time in four categories of data.

and historic data can be extracted. Contextual data can be provided by the
BPMS or by external sources like traffic or weather forecasts. Some of the
statistics described in the next paragraph can be collected either globally for
a whole process log, or in reference to attributes like a resource or activity.

Possible candidates are:

Trace Length is the number of events in the trace, or |ĉ|.

Cycle Time is the lead time of a case, or the current lead time of a partial
trace. It can be calculated as #time(ĉ(n))−#time(ĉ(1)) with n = |ĉ|.

Service Time is the time actually worked on a case. It can be defined
as the time spent by activities between the START and COMPLETE life
cycle transitions with the same resource handling the event. For the
implementation should be noted that the extraction also should work
for nested activities.

Queue Time is the time a case spends waiting in a queue, e.g. because no
resource is available. Depending on the log, this can for example be
defined as the time spent between the SCHEDULE and START life cycle
transitions.

Wait Time The time a case spends waiting otherwise, e.g. on customer
side.

Cost of a case or event. If no information about the cost are available, the
service time can be used to estimate costs, e.g. if multiplied by an
average resource cost per hour. As discussed in Chapter 1, a variety
of cost-based accounting strategies exist.

Loops in the trace and their length. A loop is a repeating sequence of activ-
ities in a trace. These cam be further narrowed down to sequentially
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repeating patterns. A high number of loops might be an indicator for
problems in the case.

Competing cases are cases which run concurrently to a given case and
need to go through the same activity, or be handled by the same
resource.

Outcome of a case. This definition is highly specific to the use case, but
as a nominal value very suitable for a classification task. It is part of
the quality dimension.

Current weekday In many scenarios, the current day can give an indi-
cation about expected cycle time or costs by considering weekends or
pubic holidays, and the resource availability on those days.

Weather might be an important contextual factor for certain organisa-
tions.

Risk of a decision. The risk tries to quantify the chance and cost of an
error.

While all of the variables are suitable as predictors, it does not make sense
to use all of them as target variables as well. Predicting the weather based
on historic case data will usually not help in operational decision making
scenarios. Therefore the target variables are usually not considered to be
contextual or design data, but rather reside in one of the performance di-
mensions quality, cost and time.

3.3.2 Detection of problematic process instances

To detect and highlight problematic process instances at run-time, two kinds
of information can be utilised. The prediction of KPIs can offer valuable
clues about the condition of a business process. If the projected performance
in one or more dimensions lies under a certain threshold, some corrective
action needs to be taken to mitigate the bad performance. In previous
approaches this threshold often is user-defined and the exception detection
triggers an alert in the monitoring system. The current approach tries to set
the threshold dynamically by considering historic data, so that, for example,
the worst-performing quarter can be used as a limit.

Furthermore, in case of detecting a problematic instance, not just an alert
is triggered, but the risk of a decision can be estimated and an appropriate
recommendation for a course of action can be given. A naive approach of
risk estimation is used for the evaluation. Risk is estimated by the cost of an

41



3.3. DECISION SUPPORT CHAPTER 3. APPROACH

erroneous decision multiplied by the probability of an error. Additionally,
the confidence of the recommendation can be calculated.

Based on the estimated risk and the recommendation confidence it can be
determined whether an automation would be beneficial to the situation.
Based on these two factors there are four possibilities. If the risk is high
and the confidence low, the system will not take automated action, but
rather notify a human operator (automation level 2, the computer offers a
set of alternatives). This case supports the decision maker by detecting a
problematic instance which requires human attention. If both the risk and
confidence are high, other factors have to be taken into consideration as well.
Those factors could include a pre-defined threshold for risk, or the number
of risky decisions taken in recent time. In any case, a decision maker should
be notified, possible together with a recommendation for further action
(automation level 3, selection narrowed down to a few).

With low-risk decisions the system has more room to operate autonomously.
When there is low risk and high confidence, the system may act automat-
ically and inform the human decision maker if asked for a summary (au-
tomation level 8). A decision task combining low risk and low confidence
is another border case like described in the high risk and high confidence
scenario. It boils down to the willingness of the process owner to take risks,
and depends on the concrete use case.

3.3.3 Prediction of performance indicators

For the prediction of performance indicators both linear regression and a
multilayer perceptron (feedforward neural network) are evaluated. Both
types are supervised learning algorithms and can be used to establish a
mapping between a vector of input features ~X and a result Y , which aims
to be valid for a given training set. Such algorithms assume that the pre-
diction of future variables depends on their historical behaviour. Such an
assumption may not be valid for long-term developments, but is sufficient
for short-term predictions.

3.3.4 Classification of process instances

The classification of cases can be done in regard to a nominal performance
indicator. This indicator may be constructed artificially, e.g. the outcome
may depend on the existence of certain activities in the case. The current
approach compares the decision tree implementation J48 (based on C4.5)
and multinominal logistic regression (One-vs-All) for such classification.
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3.4 Business Process Simulation

The learning algorithms introduced in the last chapter need a training data
set to learn either the regression coefficients, the decision rules or to con-
struct the underlying neural network. To generate such a training data set,
BPS can be utilised. As described in Chapter 2, a simulation consists of
a process model and a simulation environment. To integrate recommen-
dations, the environment has not only to provide probabilities for certain
paths, but also a mechanism to influence the decisions made in the process
flow by issuing recommendations.

On the other hand a simulation model should aim to reflect the reality as
good as possible. To evaluate the current approach based on a real life set-
ting, a real event log is chosen, analysed and eventually used as a simulation
model. In a first step, this model is then used to generate event logs which
serve as training data and as an evaluation benchmark. In a second step,
the simulation is conducted with a recommendation-enabled environment,
and the event logs are used to compare the performance indicators with the
original simulation.

To create a simulation model from real life event logs, some preparations
have to be undertaken. The event log needs to be of sufficient quality to be
able to extract a process model, e.g. by means of process mining. Based on
this model the work-flow of the simulation can be designed and the transi-
tion probabilities can be determined. An simulation model should abstract
the internal details of a business process, and solely rely on stochastic distri-
butions. Due to those challenges, real processes often can only be modelled
in an approximate fashion. The key characteristics of the original process
should be reflected in the simulation model and output to be of any use for
further analysis.

For the current approach an event-based simulation is used. Possible entities
are business cases and resources. A case holds all information associated to
this case, much like the structure of a case in an event log; and a resource
holds information about its name, group and organisation. A business event
implements an activity from the event log, and it is always associated with
a case and optionally with a resource. Due to these similarities to the event
log format introduced at the beginning of this chapter, such a simulation
can easily produce valid event logs, which can be stored for further analysis
with external tools like process mining suites.
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3.5 Integrated Architecture

This section illustrates the integration of the three components: The feature
extraction discussed in Section 3.2, the decision support system described
in Section 3.3 and the simulation described in Section 3.4.

Fig. 3.3 (below) shows the initial data collection phase. The simulation
model is used with a simulation environment to conduct simulation runs.
These runs are based on probabilities as defined in the model, and produce
event logs. The monitoring component in the environment registers these
events, calculates the performance indicators at each step, and stores the
collected event logs. The data collected here acts as benchmark for the
evaluation of the decision support system.

Figure 3.3: Architecture of the benchmark simulation and initial data collection (own
illustration).

Fig. 3.4 (overleaf) shows the integration of a decision support system into
this architecture. While the internal mechanisms of the execution environ-
ment are not changed, the simulation is not based solely on probabilities
anymore, instead the control flow can be actively controlled by the given
recommendations. To enable recommendations the architecture is extended
by a decision support component. This decision support system receives
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global data, design data (decision space), and contextual data from the en-
vironment. At the same time the support system has access to the historical
event logs stored from the first phase, which are used to train the learning
algorithms.

Figure 3.4: Architecture of the recommendation-enabled simulation (own illustration).

3.6 Shortcomings and Assumptions

Possible shortcomings of this approach include the manual feature defini-
tion, which is use-case specific. With the generic features discussed in this
chapter alone, it might not be possible to make good recommendations for
specific use cases. Furthermore, the weighting of the factors and perfor-
mance dimensionalities has to be determined manually as well. This could
be improved by using an automated optimisation algorithm, which is able
to find optimal parameters for a given problem. The risk and cost estima-
tion is based on naive approaches, but can easily be exchanged with more
sophisticated alternatives.

In regards to the simulation, the proposed model will not accurately reflect
reality, but rather approximate it roughly. Also it is assumed that a given
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process log can be transformed in a simulation model. This might not
always hold true, especially if the existing event logs are of bad quality. To
solve this problem, the automated extraction of a simulation model could
be utilised in future approaches.
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Chapter 4

Implementation

This chapter describes the implementation of the real-time decision support
approach in BPM environments as discussed in the last chapter.

It starts with a survey of event logs in the public domain, with the goal of
selecting a log suitable for the evaluation of the decision support approach.
An event log (or process log) contains traces of one or more cases (or process
instances). A trace consists of a sequence of events usually collected by an
information system.

After a suitable log is selected, an analysis of the log is conducted to gain
a deeper understanding of the data set. Based on this analysis a simula-
tion model is creates which then is implemented in a Java-based simulation
framework. To apply the recommendation approach to this simulation, a
small business process execution and monitoring system is implemented,
which coordinates the experiment and collects data for the evaluation in
the next chapter.

4.1 Data Survey

In the following paragraphs three types of sources for finding a suitable
event log are discussed, and in the next sections concrete examples of those
are described in detail.

A starting point to find event logs are the homepages of process mining
tools such as ProM 1 or Disco.2 ProM is an open-source framework for pro-

1. Cf. ProM 6.3: Description and Example Logs, 2013, accessed April 19, 2014, http:
//www.promtools.org/prom6.

2. Cf. Rozinat, A., Disco User’s Guide, 2012, accessed April 19, 2014, http://
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cess mining developed primarily by the Process Mining Group of the Eind-
hoven Technical University. Many other authors contributed plug-ins (cur-
rently about 500 available plug-ins3) and other improvements to the project.
Disco is a proprietary process mining tool developed by Fluxicon Process
Laboratories, a company started by two PhDs graduates of the Eindhoven
Technical University. Under their Academic Initiative, Fluxicon offers free
academic licenses to certain tertiary students. While ProM only provides
the user with simple example logs to aid them in learning the basics of the
tool, Disco offers two more sophisticated process logs for the same reason.
One set to guide the user through the learning process, and a larger one
derived from real process logs to explain the advanced features of their tool.

A second source of event logs are books about Process Mining. The book
Process Mining: Discovery, Conformance and Enhancement of Business
Processes written by Wil van der Aalst4 describes some logs, most of which
are available online.5 The majority of these logs serve an educational pur-
pose, e.g. they are only adequate to explain and show process mining algo-
rithms and their shortcomings. One promising artificial data set introduced
by van der Aalst (a peer-review process) is also found in the next source
and is discussed in the following section.

Another great source of data is the data repository of the 3TU.Federation,6
a network of three technical universities in the Netherlands: Delft University
of Technology (TU Delft), Eindhoven Technical University (TU/e) and the
University of Twente. This repository stores data sets originating from
technical and scientific research in the Netherlands. The data is publicly
available and can be used, among other things, for scientific research. 3TU
hosts a collection of event logs published by the IEEE Taskforce on Process
Mining, with both synthetic and real data sets.7

fluxicon.com/disco/files/Disco-User-Guide.pdf.
3. ProM 6.3: Description and Example Logs.
4. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of

Business Processes.
5. van der Aalst, W. M., Event logs and models used in Process Mining book, 2011,

accessed October 12, 2013, http://www.processmining.org/event%5C_logs%5C_and%
5C_models%5C_used%5C_in%5C_book.

6. 3TU Datacentrum, 2014, accessed April 19, 2014, http : / / data . 3tu . nl /
repository.

7. IEEE Task Force on Process Mining, IEEE Task Force on Process Mining -
Event Logs, accessed April 19, 2014, http://data.3tu.nl/repository/collection:
event%5C_logs.
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4.1.1 Real Life Event Logs

The data discussed in this and the next section comes from the 3TU repos-
itory. This section introduces three event log sets published for the yearly
Business Process Intelligence Challenge (BPIC). This challenge is held in
conjunction with the International Conference on Business Process Manage-
ment and invites participants to analyse a set of real-life event logs focusing
on one or more questions provided by the original process owner.

4.1.1.1 BPIC’13: Volvo IT Support (VINST)

Description The set of event logs was provided by Volvo IT for the BPIC
2013. It is divided into three subsets, two coming from their problem
management system8 and one from their incident management sys-
tem.9 This combined information system is called VINST. Within the
process, two separate organisational units exist.

Content The incident management event log contains 7,554 cases and a
total of 65,533 distinct events, and the problem management system
contains 2,306 cases and 9,011 events over a time span of roughly 2
years, although some outlier cases are active for a much longer period
(4-6 years). Cases start with an automated or manual incident/prob-
lem report, and they end with a resolution or closure of the case –
except for the open problems set, which contains events without res-
olution.

Questions The process owner was interested in four questions:10

1. Push to Front (incidents only): Is there evidence that cases are
pushed to the 2nd and 3rd line too often or too soon?

2. Ping Pong Behavior: How often do cases ping pong between
teams and which teams are more or less involved in ping-ponging?

3. Wait User abuse: Is the wait user substatus abused to hide prob-
lems with the total resolution time?

8. Steeman, W., BPI Challenge 2013, closed problems, 2013, doi:10.4121/uuid:
c2c3b154-ab26-4b31-a0e8-8f2350ddac11; Steeman, W., BPI Challenge 2013, open
problems, 2013, doi:10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da.

9. Steeman, W., BPI Challenge 2013, incidents, 2013, doi:10.4121/uuid:500573e6-
accc-4b0c-9576-aa5468b10cee.
10. Cf. original data set description Volvo IT, VINST data set, 2012, accessed

April 19, 2014, http://www.win.tue.nl/bpi/%5C_media/2013/vinst%5C_data%
5C_set.pdf.
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4. Process Conformity per Organisation: Where do the two organ-
isational units differ and why?

Performance Indicators One general indicator is the total flow time (res-
olution time). Other indicators tailored to the questions are the push
to front policy conformity (cases handled by the 1st level support),
number of handovers between support teams (ping-pong behaviour)
per product or team, the correlation between number of handovers
and resolution time or life time so far, and finally the time spent in
the Wait-user status as indicator for possible abuse cases.

Findings In respect to the original questions, participants of the challenge
came to the following conclusions. The overall Push-to-back ratio
is normal, but prominent with certain teams and products. More
contextual data is needed to determine causes of this behaviour (e.g.
busy periods, incident types). The log exposed different types of ping-
pong behaviour, linear and circular ping-pongs. Finally, there are
differences in the process flows of the two organisational units.11

Problems The case description offers only little information about strat-
egy, goals or expectations. This makes a qualitative judgement impos-
sible, the only way of judging a team is based on another teams per-
formance. Also there is no information about the process or product,
which makes it hard to determine causes of the observed behaviours.

Suitability for this thesis Promising – The process model is not overly
complex. The original questions do not directly relate to decision
support scenarios, but the identified performance indicators allow a
broad monitoring. Previous findings are mostly irrelevant for such a
scenario, however the missing context could prove to be a challenge.

Fig. 4.1 and Fig. 4.2 depict process models of the open and completed
process logs in a rather coarse resolution. Uncommon activities and paths
have been removed, and the numbers are absolute frequencies.

4.1.1.2 BPIC’12: Dutch Financial Institute

Description This set of event logs was provided by an anonymous Dutch
financial institution for the BPIC 2012. Each case represents a per-

11. Cf. Bautista, A. D. et al., “Process Mining in Information Technology Incident
Management: A Case Study at Volvo Belgium” (2013); Kang, C. J. et al., “Process
Mining-based Understanding and Analysis of Volvo IT’s Incident and Problem Manage-
ment Processes” (2013).
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Figure 4.1: Process model extracted from the open VINST logs (own illustration).

Figure 4.2: Process model extracted from the completed VINST logs (own illustration).

sonal customer loan or overdraft approval process.12

Content The event log contains 13,087 cases (applications) and some 262,200
events. Three sub processes (Application, Offer, Work) were merged
to create this log. A trace always starts with the customer submitting
an application through a webpage. This event contains the amount of

12. van Dongen, B., BPI Challenge 2012, 2012, doi:10.4121/uuid:3926db30-f712-
4394-aebc-75976070e91f.
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money requested by the customer. Traces end with a decision regard-
ing the application (Accept/Reject/Cancel).

Questions The process owner was interested in the following questions:

1. Are there estimators for the total lead time?

2. Which resources generate the highest activation rate of applica-
tions?

3. What does the process model look like?

4. Which decisions have a significant influence on the process flow?

BPIC participants could choose to analyse the process as a whole, or
only one of the three sub processes.

Performance Indicators Applicable performance indicators are lead time
(total flow time), resource utilisation in terms of wait time (i.e. wait-
ing for a customer response) vs. work time, and resource efficiency
(time).

Findings Four main conclusions can be drawn. The first finding is that
automated application cancellations can occur earlier than the estab-
lished default of 30 days. Secondly, through event level data, insights
into resource performance can be gained. The resource deployment in
the organisation as captured by the event logs is not optimal, so called
specialists can work more efficiently then all-rounders. And lastly, the
use of decision/classification trees can help with work prioritisation
early in the process.13

Problems Extensive pre-processing is necessary to reduce the overall com-
plexity of cases (4000+ variants on a process with just 6-7 key steps).
This includes the removal of redundant business events and concurrent
events. The pre-processing requires business judgement to further re-
duce the complexity. Additionally, missing context information makes
an interpretation of the event log regarding to the original questions
hard. For example, the data set contains no (additional) information
about customer demographics, or a customer history.

Suitability for this thesis Good – The process model can be simplified
by omitting redundant events and by concentrating on one of the three

13. Cf. Bautista, A. D., Wangikar, L., and Akbar, S. M. K., “Process Mining-
Driven Optimization of a Consumer Loan Approvals Process” (2012), 1–26; Molka, T.,
Gilani, W., and Zeng, X.-J., “Dotted Chart and Control-Flow Analysis for a Loan
Application Process” (2012).
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sub processes. Related approaches have shown that a decision support
scenario is feasible, e.g. for prioritisation early in the process.

Fig. 4.3a shows the process model for the application sub process. While
all cases are represented in this sub process, it only contains 23% of the
total events.

Fig. 4.3b shows the model for the offer sub process. Since not all loan
applications receive get an offer, only 38% of the cases are represented in
this sub process, and it contains 11% of the events.

The work item sub process is not pictured here, since it is more complex
than the previously mentioned sub processes and needs simplification to
be displayed graphically. Roughly three quarters (73%) of the cases are
represented in this sub process, and it contains 64% of the events.

(a) Application sub process (b) Offer sub process

Figure 4.3: Process models for two sub processes of a loan application process at a Dutch
financial institution. (own illustration).

4.1.1.3 BPIC’11: Dutch Academic Hospital

Description The last real life set of event logs was provided by a Dutch
academic hospital for the BPIC 2011. Each case represents a patient of
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a Gynaecology department and contains information about activities
and their organisational units.14

Content The event log contains 1,143 cases (care-flow of patients) and a
total of 150,291 distinct events. Cases do not have a common start or
end event.

Questions The original process owner did not state any specific questions,
the participants were encouraged to focus either on a specific aspect
of interest in detail or a broader analysis considering more aspects.

Performance Indicators Possible indicators are total flow time, or num-
ber of cycles in a case. Due to the highly personalised nature of each
treatment, however such indicators are not widely applicable.

Findings Obtaining a streamlined flow model is hard, but possible if the
analysis is reduced to the organisational dimensions and by pre-processing
the raw event data. Furthermore, the trace alignment technique has
proven to be suitable for mining a process model, and segmenting the
patients based on the urgency of their illness.15

Problems The obtained process model is a Spaghetti-like process model
(Bose 2013) with many nodes and possible flows, which is is not easily
comprehensible for humans. This is illustrated in Fig. 4.4 (overleaf).

Suitability for this thesis Poor – Due to the complex structure it is hard
to obtain a streamlined process model, and consequently a complete
simulation model.

4.1.2 Synthetic Event Logs

This section introduces synthetic event logs available from the 3TU data
repository. Unlike the real life event logs discussed before, the description
of questions has been omitted here.

14. van Dongen, B., Real-life event logs - Hospital log, 2011, doi:10.4121/uuid:
d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.
15. Cf. Bose, R. P. J. C. and van der Aalst, W. M., “Analysis of Patient Treatment

Procedures” (2011), doi:10.4121/uuid; Caron, F. et al., “Beyond X-Raying a Care-
Flow: Adopting Different Focuses on Care-Flow Mining” ().
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Figure 4.4: Spaghetti-like process model of a Dutch Academic Hospital created from non-
pre-processed event data. Despite the complexity, it contains only the 6% most-frequent
activities and 20% of the paths (own illustration).

4.1.2.1 Artificial Digital Copier

Description This artificial event log was created to test a new two-step
approach in data mining utilising a fuzzy miner.16 The log describes
the workflow of a simple digital photo copier supporting various opera-
tions; photocopying, scanning, and printing. Additionally the scanned
documents can be sent via email or FTP upload. The event logs were
generated by simulation and contain very detailed internal logs.17

Content The event log contains 100 cases and a total of 35,000 distinct
events. Cases always start and end with a common event.

Performance Indicators Although not the focus of the original research,
a possible indicator is the total flow time.

Findings To remove the low level details an analyst might not be interested
in, a two-step approach is suitable. In the Pattern Abstraction plu-
gin developed for ProM, firstly patterns are discovered, then filtered,
which leads to a selection of abstractions. Based on these abstrac-
tions, the log can be transformed to a representation containing only

16. See Bose, R. P. J. C., Verbeek, E. H. M. W., and van der Aalst, W. M. P.,
“Discovering Hierarchical Process Models Using ProM,” in CAiSE Forum 2011 (London,
UK, 2012), pp. 33-35.
17. Bose, R. P. J. C., Artificial Digital Photo Copier Event Log, 2011, doi:10.4121/

uuid:f5ea9bc6-536f-4744-9c6f-9eb45a907178.
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interesting parts.

Problems The log is very detailed and mostly consists of internal nodes
(decisions made by the printer’s software), which are unambiguous
and do not require decision support.

Suitability Poor – There are no clear decision support tasks.

4.1.2.2 Loan Application Example

Description This event log was created to evaluate new process mining
techniques.18 There are four different configurations of the process,
however they only contain dummy events without business context.

Content The event log contains 100 cases and a total of 590 distinct events.
Cases always start and end with a common event.

Performance Indicators Without any contextual information, only generic
indicators such as lead time can be considered.

Findings The log enabled new insights into process mining techniques.

Problems None – The original research was not examined in detail since
the logs are not suitable for this thesis and new process mining tech-
niques are not in the scope of this thesis.

Suitability Poor – The logs do not contain enough contextual information
to be of any use for decision support scenarios. Since the logs were
created to evaluate new process mining techniques, and are therefore
tailored to model creation problems, this does not come as a surprise.

Figure 4.5 (overleaf) shows a process model generated from this data set.
The missing business context can be clearly seen by the anonymous labels.
The numbers depict the absolute frequency of occurrences.

4.1.2.3 Review Example

Description This event log set contains traces of a peer review process.19

It was used to evaluate a new approach for predicting lead times of

18. Buijs, J., Loan application example, 2013, doi:10.4121/uuid:bd8fcc48-5bf3-
480e-8775-d79d6c700e90.
19. van der Aalst, W. M. P., Synthetic event logs - review example large.xes.gz, 2010,

doi:10.4121/uuid:da6aafef-5a86-4769-acf3-04e8ae5ab4fe.
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Figure 4.5: Process model extracted from configuration 1 of the artificial loan application
logs (own illustration).

processes.20

Content The event log contains 10,000 cases and about 150,000 distinct
events. A case (a review process) always starts with inviting reviewers.
Those reviewers can either return their review, or decide not to answer.
When all reviews are collected, a decision is made whether to accept
or reject the paper.

Performance Indicators The original research focused on the total flow
time, since the goal of the approach was to predict the total flow time.
Alternatively, the number of exception (i.e. review time-outs) could
be used on a resource basis.

Findings By obtaining a transition model of the abstracted process logs,
good predictions are possible.

Problems The original research does not state any problems associated
with this event log.

Suitability Promising – A possible decision support scenario could include

20. van der Aalst, Schonenberg, and Song, “Time Prediction Based on Process
Mining,” p. 20.
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which reviewer to invite in the first place, e.g. to filter out those who
are not likely to answer, or who would take too long to complete their
review.

For this thesis, this data set presents the most promising set of all synthetic
logs introduced in this section. Figure 4.6 shows the process model gener-
ated from this data set. As in the previous example, the numbers depict
the absolute frequency of occurrences.

Figure 4.6: Process model extracted from the artificial review example logs (own illus-
tration).
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4.1.3 Conclusion

All event logs discussed are only available in raw form, so before they can
be used to design a simulation model they need to be converted to a process
model by means of process mining.

The real-life event logs need at least some, and in certain cases extensive,
pre-processing in order to conduct a traditional analysis. This poses a chal-
lenge for abstract run-time analyses. Furthermore no real-life logs explic-
itly define exceptional cases, they are only detectable by observation of
behaviour and deduction of a standard process model. Once the logs have
been processed however, they offer potential to be used in a real-time test
scenario.

The BPIC 2013 event log is promising due to its simple structure. However,
missing contextual information make it hard to utilise for a decision support
system, which could only concentrate on generic performance indicators like
lead time. This event log would profit more from an organizational analysis.

The BPIC 2011 event log is not suitable, since it produces spaghetti-like
process models which are extremely hard to comprehend.

The most promising real-life data set is the BPIC 2012 event log described
in Section 4.1.1.2, containing traces of personal loan applications. Seen as
a complete model, it is still very complex, but has the advantage of being
composed of three sub processes. When focusing at one of the sub processes,
the model gets considerably more manageable.

Most of the synthetic event logs have been developed to test new process
mining techniques. This and the lack of business context make them less
usable in a real-time scenario. The only promising event log is the review
example, which can be simplified to a clearly arranged model with a couple
of decision tasks. However, missing contextual information make it hard to
utilise.

4.2 Process Model

The data from the BPIC 2012 (logs of financial institution) is the best
candidate for the evaluation of a decision support system. The event logs
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are available in Mining eXtensible Markup Language (MXML)21 and XES22

formats, which all modern process mining suites can read.

To analyse and visualise the event logs the process mining tools Disco23 and
ProM have been used. The mathematical language GNU Octave and the
Java library OpenXES were also helpful to extract and analyse the necessary
data.

4.2.1 Analysis

The event log is from a Dutch financial institute, containing events related
to an application process for a personal loan or overdraft. The workflow of
a successful application is described as follows:

An application is submitted through a webpage. Then, some
automatic checks are performed, after which the application is
complemented with additional information. This information
is obtained through contacting the customer by phone. If an
applicant is eligible, an offer is sent to the client by mail. After
this offer is received back, it is assessed. When it is incomplete,
missing information is added by again contacting the customer.
Then a final assessment is done, after which the application is
approved and activated.24

Each trace has the global attributes AMOUNT_REQ, the amount of money
requested by the customer, and REG_DATE, the date of application. Three
separate sub processes can be identified in the data. The log contains 24
distinct event classes, which are prefixed according to their respective sub
process with A_ for states of the application (10 states), O_ for states of the
offer belonging to an application (7 states) and W_ for states of work items
(7 states). Work states support three life cycle phases: SCHEDULE when the
work item is created in the queue, START when it is obtained by a resource
and COMPLETE when it is released by the resource.

An application ends with one of three possible outcomes. As described in
the successful scenario above the first possible outcome is the approval of a

21. Verbeek, H., Mining eXtensible Markup Language (MXML): Definition, 2011, ac-
cessed April 22, 2014, http://www.processmining.org/logs/mxml.
22. Günther and Verbeek, Extensible Event Stream (XES): Standard Definition

v2.0 .
23. Disco Process Mining Tool, accessed April 14, 2014, http://www.fluxicon.com/

disco.
24. BPIC 2012 Event Log Description, 2012, accessed April 26, 2014, http://www.

win.tue.nl/bpi/2012/challenge.
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loan application, which only happens after the initial application has been
completed, an offer sent to the customer and the application passed a fi-
nal assessment. Alternatively an application can be declined at any point in
the process. The last alternative is the cancellation of an application, which
again can happen at any time. The data indicates that this is often trig-
gered automatically after a certain time-out period, e.g. 30 days without
activity after sending an offer to the customer or requesting more infor-
mation from the customer. Since the most recent event is not necessarily
indicative of the outcome, determining the actual outcome of a case requires
analysing the whole trace. The order of events may differ depending on the
resource working on the case or due to possible concurrency in the work-
flow. For the remainder of this analysis it is assumed that a case containing
the A_ACTIVATED event was accepted, a case containing A_DECLINED was
declined and a trace containing A_CANCELLED was cancelled.

About 60% of all applications are declined in the process. Of those, 45% are
declined immediately by automated checks, and another 28% are declined
immediately after an employee has looked into the case. 22% of all applica-
tions are cancelled, the majority of these cancellations occurs 31 days after
the initial submission. This is probably due to aforementioned automated
time-out of applications in the system. Successful applications represent
the remaining 18% of cases.

It is not easy to obtain a fitting and comprehensible process model from
the raw data. The event logs need extensive pre-processing and manual
enhancement. Some of the problems (and additional insights into the data)
have been described in the original submissions of the BPIC 2012.25 Some of
the submissions concentrated on the mining aspect and were able to extract
a model with a very good fit to the data.26 In this thesis however the goal
is to extract a model suitable for further simulation, and not necessarily a
perfect process model. As such the event log seems to be suitable for an
evaluation.

4.2.2 Simplification

While the analysis in 4.2.1 gives a first insight into the process, it is still nec-
essary to extract a streamlined process model suitable for simulation. The

25. Bautista, Wangikar, and Akbar, “Process Mining-Driven Optimization of a
Consumer Loan Approvals Process”; Molka, Gilani, and Zeng, “Dotted Chart and
Control-Flow Analysis for a Loan Application Process.”
26. Adriansyah, A. and Buijs, J., “Mining Process Performance from Event Logs”

(2012).
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structure is complex and it is hard to extract concrete probability distribu-
tions. The event logs itself still hold some more potential for simplifications,
but this makes it necessary to manually pre-process the event logs to obtain
a simpler model. In this sections further simplifications applied to the event
log are described.

To start with some of the cases in the log are not completed yet and can be
removed. Any case with an unknown outcome – i.e. all cases which do not
contain at least one of the events A_ACTIVATED, A_DECLINED or A_CANCELLED
– have been discarded for further analysis. This leaves 12,688 cases and
249,451 events (roughly 95% of the original data set).

Event (Lifecycle) Description

A-Events

A_PARTLYSUBMITTED (complete) Always follows A_SUBMITTED.

A_ACCEPTED (complete) Usually precedes A_FINALIZED.

A_APPROVED (complete) Usually precedes A_REGISTERED.

A_REGISTERED (complete) Usually precedes A_ACTIVATED.

O-Events

O_SELECTED (complete),
O_CREATED (complete)

Usually precedes O_SENT.

W-Events

W_* (schedule) Schedule events are automatically created.
While important for calculating assign-
ment times or the likes, they do not repre-
sent a direct decision task.

Table 4.1: Pre-processing of the original event logs: Event reduction.

Furthermore it can be seen that some activities are redundant, e.g. A_PARTLY-
SUBMITTED always follows A_SUBMITTED. Additionally all events associated
with the SCHEDULE life-cycle transition can be ignored, because those are
created automatically when a work item has been released by a resource.
Table 4.1 summarises all events which have been removed from the original
log. Those redundant events total 60,184 events, and after removing them
from the log 189,267 events remain (72% of the original events in the data
set). Of the 24 distinct original states only 17 states remain. This allows a
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clearer view into sub processes A and O as shown in Fig. 4.7 (overleaf).

(a) Simplified Application sub process (b) Simplified Offer sub process

Figure 4.7: Simplified sub process models (own illustration).

The complete model still cannot easily be represented comprehensibly. To
gain a better understanding of the process structure, separate streamlined
process models for the three outcomes can be extracted. These models
exclude rarely activated activities and exceptional cases.

4.2.2.1 Successful application

Figure 4.8: Timeline of the accepted applications (own illustration).

This stream represents the normal execution of a loan application process
an has been roughly outlined by the process owner (cf. last section). For
a successful application three phases can be identified. The description of
the phases contains more details than the original workflow description, e.g.
fraud checks, calls to the customer, and other details omitted in the process
owner’s description. Every contact attempt made with the customer is usu-
ally repeated until contact was made eventually (e.g. by calling at different
times of the day). The description contains the name of the respective work
item, while application and offer states are taken straightforwardly from
Fig. 4.7.

Initial phase. The submission is processed automatically and either pre-
approved or declined. Pre-approved applications are checked by an
employee (W_Afhandelen leads). An exception is made if the or-
ganization suspects a fraudulent intent, in this case the application
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is assessed for fraud by a specialist (W_Beoordelen fraude). After
completing an application, it is either declined or an offer is created.
If an offer was created, the offer phase begins.

Offer phase. This offer is then sent to the customer, and the staff tries
to contact the customer via phone (W_Nabellen offertes). Some-
times the offer is cancelled after the conversation and a new one is
created and sent to the customer, presumably due to negotiations on
the phone. Eventually the offer is returned by the customer, which
completes the application (W_Completeren aanvraag) and the vali-
dation phase starts.

Validation phase. The goal of this phase is to finalise the application.
Firstly the existing information is validated (W_Valideren aanvraag),
and if some data is missing the customer is contacted (W_Nabellen
incomplete dossiers). When all necessary information is collected,
the application is activated.

The fraud check is only performed on 107 cases (less than 1% of the data
set), and will be neglected in the simulation. The work item Comple-
tion of application (W_Completeren aanvraag) seems to be a composi-
tion of several sub-tasks, basically covering the first two phases: Initial
contact (W_Afhandelen leads), fraud assessment (W_Beoordelen fraude),
and customer contact (W_Nabellen offertes). By absolute occurrences,
contacting the customer is the most performed task in the process.

An illustration of the streamlined model for successful applications can be
found in the appendix (Fig. B.2).

4.2.2.2 Declined application

Figure 4.9: Timeline of the declined applications. Most applications are declined early
in the process (own illustration).

Declined applications generally follow the same three-phase schema as suc-
cessful applications, but the application can be declined by an employee
at any point of time. Nonetheless, 60% of the declined applications are
declined in the first phase.
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An illustration of the streamlined model for declined applications can be
found in the appendix (Fig. B.3).

4.2.2.3 Cancelled application

Figure 4.10: Timeline of the cancelled applications. The spike represents day 31 where
applications presumably are cancelled automatically due to lack of feedback (own illus-
tration).

The same three-phase schema holds true for cancelled applications. The
three phases are visible in the streamlined model, but the majority of can-
cellations happen in the offer and validation phases. This is most likely due
to the time-outs discussed previously.

An illustration of the streamlined model for cancelled applications can be
found in the appendix (Fig. B.4).

4.2.3 Conclusion

The event log on hand represents a complex business process and cannot
easily be transformed into a single unified and comprehensible process model
by means of simple process mining. To tackle this problem some potentials
for further manual simplification have been identified, and by removing
redundant events the overall complexity could be reduced considerably. The
simplified data set is 28% smaller on the event side, while only losing 5% of
the cases, eachof which is fully attributable to incomplete process instances.

This simplified model was further decomposed into the three application
types accepted, declined and cancelled to allow better insights into the un-
derlying process structure. With this method a clear three-phase structure
was identified. Additionally, Fig. 4.8, Fig. 4.9 and Fig. 4.10 show unique
timeline patterns for each of the application types.
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4.3 Simulation

Based on the understanding of the business process gained so far, a sim-
ulation model can be built. The model designed in this section does not
cover the complete business process, rather only some key elements for the
purpose of showing the feasibility of the approach and to enable a first eval-
uation. However, in this simplified version of the process the likelihood and
probability distribution of occurring events is based on the real data set.

For the concrete implementation the Java-based framework DESMO-J 27

was chosen. It has been developed mainly by the modelling and simulation
group of the computer science department at the University of Hamburg and
allows the creation of object-oriented simulation models. It supports both
discrete-event simulation and continuous simulation, and even the combi-
nation of both approaches in one simulation model, and can be integrated
into existing BPM systems.28

4.3.1 Simulation Model

The simplified process model used for the simulation model is shown in Fig.
B.5 (appendix). It contains eleven discrete activities, and two additional
artificial start and end events (START and END). The decision space is out-
lined in Table 4.2. The ordering of activity has been adjusted, so that a
work item always completed before a state change in the offer or applica-
tion happens. This simplifies the model significantly, and does not change
the overall workflow. The simulation model contains a possible loop when
contacting the customer, since this activity was repeated quite often in the
original logs. This is the only part in the model where an application can
be cancelled, which was usually triggered by a time-out in the original pro-
cess. Additionally, the original activity descriptions have been translated to
English.

27. University of Hamburg: Department of Computer Science, Discrete Event
Simulation Modeling in Java (DESMO-J), 2014, accessed April 27, 2014, http : / /
desmoj.sourceforge.net.
28. Gehlsen, B. and Page, B., “A Framework For Distributed Simulation Opti-

mization,” in Proceedings of the 2001 Winter Simulation Conference (Arlington, VA,
USA: ACM, 2001); Rücker, B., “Building an open source Business Process Simulation
tool with JBoss jBPM” (Master Thesis, Stuttgart University of Applied Science, 2008);
Göbel, J. et al., “The discrete event simulation framework DESMO-J: Review, compar-
ision to other frameworks and latest development,” in Proceedings of the 27th European
Conference on Modelling and Simulation, vol. 4 (Aalesund, Norway, 2013), 100–109, isbn:
9780956494467.
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Activity Decision Space

A_SUBMITTED A_DECLINED, A_PREACCEPTED

A_PREACCEPTED W_AssessApplication

W_AssessApplication A_DECLINED, O_CREATED

O_CREATED O_SENT

O_SENT W_ContactCustomer

W_ContactCustomer W_ContactCustomer, O_CREATED,
O_SENT_BACK, A_CANCELLED

O_SENT_BACK W_ValidateApplication

W_ValidateApplication A_ACTIVATED, A_DECLINED

Table 4.2: Decision space of the simulation model.

The probability distributions were gathered by analysing historical data, i.e.
the simplified event logs of the original process. Fig. 4.11 illustrates this
based on real data extracted from the original event log. The histograms
4.11a and 4.11b respectively, show the arrival interval of loan applications in
seconds, and the amount of money requested per application. While the ar-
rival rate can be approximated by a χ2 or Gamma distribution, the amounts
requested per case do not relate to one of the common distributions. While
it clearly exhibits some exponential behaviour, the preference of customers
to chose even numbers (as 500, 750, or 5000) is clearly visible and distorts
the distribution. In such cases, instead of using a probability distribution,
a random sample was drawn from the original population to approximate
the correct distribution.

The process was modelled as a directed graph with edge annotations. The
annotations define the transition probability, and the transition duration of
the respective edge. This allows for a clean, semi-automatic integration with
DESMO-J by separating the process model from the simulation model. In
this way simulation environment provides the framework around the process
model. Tab. B.1 (appendix) shows the used edge annotations (transition
probabilities and distributions used for duration sampling) in detail.

Events can be distinguished into two categories, simple events which only
reference a case, and resource-dependent events, which need a case and a
resource to trigger. Simple events are for example the submission or initial
rejection of an application, i.e. events with an automated resource. On
the other hand, work items reserve an available resource for a time period

67



4.4. RECOMMENDATION SERVICECHAPTER 4. IMPLEMENTATION

(a) Arrival rate of applications. (b) Amount requested per case.

Figure 4.11: Histograms of (a) the arrival rate of new loan applications in seconds (show-
ing only 40 of 100 bins), and (b) the amounts requested by customers (own illustration).

determined by the underlying distribution for the given activity.

The only constraints imposed on the simulation are workflow-based restric-
tions, as defined by the decision space. The original event log does not
indicate any resource bottlenecks, therefore resources are assumed to be
available all the time. Additionally, the probability distributions defined for
the time spans already incorporate small variations.

4.3.2 Simulation State

At any given time, the simulation state is known. It contains informa-
tion about the control flow (partial traces), case data (contextual data,
e.g. amount of money requested in loan application), resource data (e.g.
availability and utilisation), and statistics of each events and entities.

This state is kept synchronised with the Business Process Execution and
Monitoring (BPEM) environment, which acts as simulation environment
and controlling instance, and is described in more detail later on. This is
achieved by sending event logs to the BPEM whenever the state changes,
i.e. an activity is executed.

4.4 Recommendation Service

The original goal of this thesis is to explore decision support in BPM envi-
ronments. A decision support system aims at relieving the human operator,
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e.g. by decreasing their work load. A recommendation service enables such
a decision support on operational business processes.

The information provided by the recommendation service can be utilised on
various levels of automation as described in Chapter 2. One possibility is to
merely support the human decision maker by providing information. This
can be done by retrieving the predicted performance of an active trace or a
possible choice, consequently allowing a comprehensive view of the current
and future performance indicators. Such information allows the human
decision maker to better assess the decision task at hand. On the scale of
automation levels this would be regarded as low automation, e.g. level 2 or
3.

Another type of support for a human decision maker is the (semi-)automatic
assessment of a decision task. By estimating the risk of a decision, which can
for example be defined as probability of a wrong decision multiplied by the
cost of an error, and the confidence of the prediction made by the learning
algorithm, a recommendation for a course of action can be made. When
confronted with a low-risk decision and a highly confident prediction the
system can autonomously take action, while it might fall back to support
through providing information in other cases. This allows the human to
just concentrate on important tasks by filtering trivial decisions, and helps
them to make a good decision, if an intervention is necessary.

4.4.1 Architecture

The recommendation service offers an interface for the process engine (or
the simulation, respectively). It serves three major purposes: the prediction
of a performance indicator, the classification of a (partial) trace, and the
assessment of a situation as well as the recommendation of an action based
on this assessment.

The recommendation service is initialised with an event log object, which
resembles the historical data. Based on this event log, the learning algo-
rithms are trained. After the initialisation, the service accepts partial traces
and responds with either a prediction or a classification for the given trace.
Internally, the service converts the logs and traces to data sets usable by
the machine learning libraries.
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4.4.2 Prediction and Classification

At the core of the recommendation service are the predictors and classifiers.
As outlined in Chapter 3, supervised learning algorithms have been chosen,
specifically linear regression and a multilayer perceptron for prediction, and
multinominal logistic regression and a C4.5 decision tree for classification.
The implementations are provided by the data mining software Weka29 in
form of a Java library.

The target value for the prediction is cycle time, while the classification
uses the outcome (accepted, declined, cancelled). Additional to the generic
features discussed in Chapter 3, some use case specific input features have
been added. This includes the case attribute AMOUNT_REQ, the outcome of
an application as discussed previously, and the length of the longest loop
in the trace. Additionally the cost of a case was estimated as the total ser-
vice time minus penalties for cancelled and declined applications. Accepted
applications are assumed to be economically profitable for the financial in-
stitution and therefore more desirable, while cancelled and declined applica-
tions represent less of a desirable outcome. While this is still a fairly naive
approach, the alternative of estimating the cost by service time multiplied
with a hourly wage is useless in this case, since the cost would then fully
correlate to the service time and provide no additional value to the input
feature vector.

The results can be used as-is or combined by a weighted ranking function
in the following form:

decision(xp) = wc ∗ cost(xp) + wt ∗ time(xp) + wq ∗ quality(x)

This recommendation has been integrated into the simulation, and can give
recommendations for a given trace at each decision point.

4.5 Experiment

The experiment combines the simulation and the recommendation service,
with the goal of extracting metrics to evaluate the approach in the next
chapter. To be able to utilise the recommendation service in the simulation
a small business process execution and monitoring environment has been
designed and implemented. The execution environment is able to collect

29. Machine Learning Group at the University of Waikato, Weka 3: Data
Mining Software, 2014, accessed April 28, 2014, http://www.cs.waikato.ac.nz/~ml/
weka/.
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event logs from the simulation, provide historic data to the recommendation
service for learning purpose, and keep track of the KPIs and their changes
throughout the simulation.

4.5.1 Design

The experiment is designed according to the integrated architecture pre-
sented in Sec. 3.5 and illustrated in Fig. 3.3 (benchmark and Fig. 3.3
(recommendation-enabled). Initially event logs have to be generated and
stored to serve as historic data for the supervised learning algorithms. These
logs are created by simulating the business process and storing the result-
ing logs. At the same time KPIs of the original simulation are collected for
evaluation purposes.

Selecting features and training of the learning algorithms marks the second
step. For this, all features discussed in Chapter 3 (performance indicators)
are extracted from the log. Depending on the recommendation approach
(prediction vs. classification), a numerical or categorical target value is
selected and the remaining predictor variables are analysed with a principal
component analysis to reduce the dimensionality to a minimum. This helps
to reduce the noise and prevents regressions from over-fitting the data.The
resulting data set is used as a base data set for 10-fold cross-validation.
This means the data set is partitioned into 10 sets, of which nine are used
as training set and one as test set. This partition is cycled 10 times, so that
each sub-set eventually has acted as both training and test set. Based on
the findings only the most promising feature set is retained.

The last phase is a simulation run utilising the recommendation service for
the decision tasks instead of the pre-defined decision probabilities. This
approach still takes constraints into account, e.g. a valid decision space and
resource availability. As in the first phase, KPIs and event logs are collected
for further evaluation.

4.5.2 Execution Environment

To conduct the experiment all parts have to be integrated. The simula-
tion and the simulation model have already been described in this chapter.
Subsequently the recommendation service was discussed in detail.

The last component necessary to conduct the experiment is the business
process execution and monitoring environment. Fig. 4.12 shows the ar-
chitecture of a simple execution environment. It offers an interface to add
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Figure 4.12: Architecture of the Business Process Execution and Monitoring Environment
(own illustration).

event logs (e.g. generated by the simulation), to export the stored event
logs in a standardised format (XES), and to extract the KPIs calculated in
the course of the execution phase. The environment also holds statistical
information about the events in the log, which can be retrieved. Internally
it uses a storage to keep track of all active and completed cases.
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Chapter 5

Analysis of Results

To start with, this chapter will introduce appropriate evaluation metrics
for prediction and classification models. After that two prediction models
and two classification models are evaluated, and compared against each
other based on an event log generated via simulation. In the next step, the
performance development of the decision tree over time is described. Finally
a conclusion is drawn from the findings and problems are briefly discussed.

5.1 Evaluation Metrics

The first metric used for this evaluation is the root-mean-square error (RMSE),
a measure of difference between predicted values ŷt and actually observed
values yt. It is used to measure the quality of a prediction model. It is
defined as:

RMSE =

√∑n
t=1(ŷt − yt)2

n
(5.1)

Here, n stand for the degrees of freedom, i.e. the size of the input feature
vector. Further, the RMSE can be normalised:

NRMSE =
RMSE

xmax − xmin

(5.2)

To measure the performance of a rule-based classification model, the sup-
port, confidence and lift can be calculated. Given a set of antecedents X
and a set of consequences Y , the support supp of a rule X ⇒ Y is defined
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as the proportion of items in the data set for which the rule is applicable,
i.e. items with matching antecedents and consequences. The confidence is
defined as:

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)
(5.3)

It measures the ratio of items for which the rule is applicable and items
which have the same antecedents. Finally, lift basically describes whether
following a classification rule is better than a random choice of the target
variable. It is defined as:

lift(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)× supp(Y )
(5.4)

Furthermore for classification tasks the precison, recall and f-measure can
be calculated. The precision for a class is the ratio of true positives, i.e. the
number of items correctly classified, and total number of elements labelled
as positives. Recall is the number of true positives divided by the total
number of elements that actually belong to the positive class. The f-measure
combines precision and recall, and weighs them evenly:

f = 2× precision× recall
precision+ recall

(5.5)

5.2 Performance Evaluation

To obtain a data set the process described in the last chapter was simu-
lated over four weeks. This produced an event log with 1,224 cases and
11,053 events. To obtain a training set, all incomplete cases have been
removed, which leaves a usable training set with 1,148 cases and 10,347
events. From these cases the attributes TraceLength, AmountRequested,
LongestLoopLength, CycleTime, WorkTime and Outcome were extracted
and used in the evaluation. In each case the overall prediction and classifi-
cation quality was tested by a 10-fold cross validation.

5.2.1 Prediction Quality

The cycle time was used as target value for both prediction models. It was
measured in minutes, and the minimum value observed was 0, the maximum
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14,341 and the arithmetic mean 2380.

5.2.1.1 Linear Regression

Fig. 5.1a shows the results for linear regression. The observed RMSE was
795.15, resulting in a normalised RMSE of approximately 5.54 percent. The
illustration shows that linear regression provides acceptable results, except
for some outliers with high cycle times.

(a) Linear Regression (b) Multilayer Perceptron

Figure 5.1: Cross-validation results for cycle time prediction. Actual cycle time is denoted
on the x-axis, and predicted cycle time on the y-axis (own illustration).

5.2.1.2 Multilayer Perceptron

The observed RMSE for a multilayer perceptron was 941.41, resulting in a
normalised RMSE of approximately 6.56 percent. This is reflected in Fig.
5.1b, which depicts the results and shows that this multilayer perceptron is
less accurate than linear regression.

5.2.2 Classification Quality

To measure the classification performance, the cases have been classified
into their predicted outcome. Of 1,148 total cases, 554 ended with the
outcome ACCEPTED, 567 with DECLINED and 27 with CANCELLED.

5.2.2.1 Logistic Regression

Logistic regression was able to correctly classify 90.06 percent of the in-
stances. Details about the accuracy by class are listed in Table 5.1a.
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Class Precision Recall F-Measure

ACCEPTED 0.830 0.998 0.907

DECLINED 1.000 0.802 0.890

CANCELLED 0.963 0.963 0.963

weighted avg. 0.917 0.901 0.900

(a) Logistic Regression

Class Precision Recall F-Measure

ACCEPTED 0.830 0.995 0.905

DECLINED 0.996 0.802 0.889

CANCELLED 0.963 0.963 0.963

weighted avg. 0.915 0.899 0.898

(b) Decision Tree

Table 5.1: Detailed accuracy of classification methods by class.

(a) Logistic Regression (b) Decision Tree

Figure 5.2: Lift for the outcome ACCEPTED. The number of instances is denoted on the
x-axis, and the lift on the y-axis (own illustration).

5.2.2.2 C4.5 Decision Tree

The decision tree was able to correctly classify 89.89 percent of the in-
stances. Details about the accuracy by class are listed in Table 5.1b. In
contrast to the clear difference in prediction performance described before,
the classification methods evaluated here do not differ that much. This
is reflected in Fig 5.2 which compares the lift of both approaches for the
outcome ACCEPTED.

5.2.3 Performance development over time

However, these results only hold true for a complete event log, since the
performance is only measured based on complete traces. These results are
helpful to initially assess the suitability of an algorithm, but to judge the
overall quality, the development of the classification performance has to be
examined over the complete life-time of a case.

Fig. 5.3 (overleaf) outlines the average confidence of correct classifications
over time (blue line). Additionally the ratio between correct and erroneous
classifications is shown (orange line). The graph shows clearly that the
classification success within the first seven steps is rather low, less than 50
percent of the classifications is correct. On the other hand, the remaining
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correct classifications have a perfect confidence of 1.0. Towards the end a
higher ratio of traces is classified correctly, and the confidence rises steadily.

Figure 5.3: Classification distribution and confidence over time. The time is denoted on
the x-axis, and the confidence of the correct classifications (blue) as well as the ratio of
correct classifications (orange) on the y-axis. (own illustration).

5.3 Interpretation

The evaluation has shown that a rather simple machine learning algorithm
utilising only a few features from an event log can deliver good results.
However, in a BPM environment predictions and classifications typically
are not needed at the end of a business process. Instead the process needs
to be correctly assessed as early as possible in its life-time.

When focusing on time-dependent performance quality, it is clear that pro-
cess instances often can not be classified early on with such traditional
techniques. In the beginning of their life span cases often have not yet de-
veloped strong characteristics. In the model used for the current approach,
the only unique attribute is the amount requested in a loan application,
which is clearly not enough information to be of any help. In a real-life sce-
nario usually more contextual information would be available, e.g. historical
data regarding the customer from the organisation’s database.
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Chapter 6

Conclusion

6.1 Summary

Research in the area of operational decision support aims to improve busi-
ness processes, their underlying models and in the end the actual process ex-
ecution. Decision support systems specifically target human decision mak-
ers, and aim to help them in their decision tasks at all levels of BPM.

The goal of this thesis was to provide an insight into existing approaches of
applying decision support technology to BPM environments, and further-
more to identify requirements for integrated support systems.

A survey of related approaches has shown that there are three types of
operational support: detection, prediction and recommendation. While de-
tection acts merely as an informative means, it can be used to develop
further support based on the detection of a problematic process instance
at run-time. The prediction of performance indicators can support both
the detection and recommendation approaches. However, most approaches
take a theoretical view onto operational decision support systems. Only
some concrete solutions have been proposed, and of these only one is a fully
integrated solution.

Furthermore, the survey has helped to identify certain requirements which
were then incorporated into the approach developed in the course of this
thesis. These requirements include the integration of a decision support sys-
tem with process execution and monitoring phases, and the use of a variety
of data sources. These sources provide case-based, design-based, contextual
and historical data, which all play an important role for operational support
systems.
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This thesis introduced an approach to providing operational decision sup-
port by utilising supervised machine learning algorithms. It aims to combine
detection, prediction and recommendation into a configurable environment.
Historical event data is used for predictive analysis, the training of a deci-
sion tree and logistic regression, while a process monitoring engine acts as
data aggregator.

A survey of publicly available real-life and synthetic event logs was con-
ducted, to eventually select a suitable log which would benefit from opera-
tional decision support. The event log of a personal loan application process
by financial institution was chosen and subsequently analysed. The analysis
revealed that it is hard to construct a comprehensive process model from
the raw data. The difficulty stems from concurrent activities, differences in
the workflow of the various resources involved in the process and its num-
ber of activities. Subsequently, the log was significantly simplified so that
a streamlined process model could be created.

This simplified model acted as a guide for a simulation model through the
incorporation of properties like work flow structure, flow times and decision
probabilities into the simulation model. This model then was used to obtain
a benchmark data set of event logs, which also acted as training set for
the decision support system. Even though the simulation model was an
abstraction of the process model discovered in the original event log, it
proved itself valuable for the evaluation of the approach.

The proposed approach was implemented as a proof-of-concept prototype,
and evaluated by performing simulation runs and collecting the accumulated
data. A small Business Process Execution and Monitoring environment
connected simulation, recommendation service and process monitoring and
allowed the exportation of the collected event logs. Additionally it stored
prediction and classification results, which then were analysed together with
the event logs with third party software.

The evaluation has shown that it is possible to achieve a good recommen-
dation performance in regards to metrics such as root-mean squared er-
ror, recall and precision, even with a few input features. However, it has
also shown that these findings only apply for process instances which have
reached the last part of their life-time. When focusing on the development of
the performance indicators over time, it is obvious that young cases do not
have enough data associated to provide confident recommendations early
on.

In summary, the thesis introduced the groundwork necessary for operational
decision support in BPM and demonstrated that the proposed approach is
both feasible and can improve the process quality.
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6.2 Outlook

Some technical remarks can be made regarding the work presented in this
thesis. In the current approach, simulation was used to mitigate the cold
start problem of recommender systems utilising supervised learning algo-
rithms. While the data produced by such simulation is not perfect in regards
to the observed reality, it is still representative enough to draw conclusions
applicable to such reality.

Building a simulation model which accurately reflects the reality and offers
a sufficient level of abstraction is a big challenge. When starting with real
life event logs, the underlying process model is often not available or ex-
istent. This makes accurate modelling of the process flow hard. Amongst
other things, process mining aims to automatically discover such process
models. The second problem is the time-consuming and laborious manual
task of fitting probability distributions. This could be improved by utilising
automatic density estimation, which itself is an unsupervised learning task.
In the future a stronger focus on the automatic creation of simulation mod-
els is necessary to make hem suitable for research in operational decision
support and eventually in real-life systems. A first approach to solve this
problem is given by Rozinat et al.1 and future approaches could advance
the automated creation of simulation models even further.

Furthermore, in this thesis resource-based constraints were ignored, and
only process flow and duration information based on historical data were
utilised. In the presented use case resource bottlenecks were not an issue,
but in future approaches resource modelling should be considered.

While the basic prediction and classification mechanisms were evaluated, the
advanced recommendations were not easily applied to the model used in this
thesis. Future approaches need to incorporate the findings of the evaluation
and work around the restrictions imposed, especially by the early life-time
phases of process instances, where not enough information is available to
provide meaningful decision support.

This thesis focused mainly on operational decision support in BPM, however
decision support systems also have potential to be used in other life-cycle
phases of BPM. Process improvement as a key corncern of BPM, lacks au-
tomated decision support systems, e.g. for helping process designers with
process re-engineering. While separated tools and approaches for confor-
mance checking, process discovery and the simulation of process model al-
ternatives exist, the combination of those approaches is widely neglected by

1. Cf. Rozinat et al., “Workflow Simulation for Operational Decision Support.”
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BPM researchers.2

The work conducted in this thesis provides an up-to-date overview of recent
approaches for process-oriented operational decision support, and a starting
point for future research in both operational decision support and off-line
decision support systems in this area.

2. Cf. van der Aalst, “Business Process Management: A Comprehensive Survey,”
pp. 28-30.
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Appendix A

Glossary

Decision Support System (DSS)
A decision support system is a computer-based interactive system,
that can be used to support decision makers in complex decision mak-
ing and problem solving, instead of replacing them. It utilises data
and models and solves problems with varying degrees of structures.1

Recommender System (RS)
The goal of a RS is to “generate meaningful recommendations to a
collection of users for items or products that might interest them”.2

Expert System (ES)
An expert system consists of a knowledge base and an inference en-
gine. The knowledge base is expressed as rules (If A then B), and the
inference engine is used for reasoning. An expert system is “a com-
puter system that emulates the decision-making ability of a human
expert”.3

Automated Advising System (AAS) An automated advising system is
usually considered an expert system,4 ans is sometimes referred to as

1. See Eom et al., “A Survey of Decision Support System Applications (1988-1994)”;
Shim, J. et al., “Past, present, and future of decision support technology,” Decision
Support Systems 33, no. 2 (2002): 111–126.

2. Cf. Melville, P. and Sindhwani, V., Recommender Systems, 2010, p. 829.
3. Jackson, P., Introduction To Expert Systems, 3 ed. (Addison-Wesley, 1998), pp.

1-14, isbn: 9780201876864.
4. Cf. Harlan, R. M., “The Automated Student Advisor: a large project for expert

systems courses,” in Proceedings of the twenty-fifth SIGCSE symposium on Computer
science education - SIGCSE ’94 (New York, New York, USA: ACM Press, 1994), 31–35,
isbn: 0897916468, doi:10.1145/191029.191046, http://portal.acm.org/citation.
cfm?doid=191029.191046; Siegfried, R. M., Wittenstein, A. M., and Sharma, T.,
“An automated advising system for course selection and scheduling,” Journal of Com-

xii

http://dx.doi.org/10.1145/191029.191046
http://portal.acm.org/citation.cfm?doid=191029.191046
http://portal.acm.org/citation.cfm?doid=191029.191046


CHAPTER A. APPENDIX

a decision support system.5

puting Sciences in Colleges 18, no. 3 (2003): 17–25.
5. Wagner, J. J., “Support Services for the Net Generation: The Penn State Ap-

proach,” College and University Journal 81, no. 1 (2005): pp. 5-10.
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Detailed Process Models

(a) All event logs. (b) Only accepted applications.

(c) Only declined applications. (d) Only cancelled applications.

Figure B.1: Key statistics for financial event log (own illustration).
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Transition t P (t) Duration (µ in min)

START → A_SUBMITTED 100% Gamma distribution:
µ = 17, k = 1, β = 2

A_SUBMITTED → A_DECLINED 26% Poisson distribution:
µ = 2, λ = 1

A_SUBMITTED → A_PREACCEPTED 74% Poisson distribution:
µ = 2, λ = 1

A_PREACCEPTED → W_AssessApplication 100% Exponential distribution:
µ = 60, λ = 1

W_AssessApplication (START)
→ W_AssessApplication (COMPLETE)

100% Normal distribution:
µ = 20, σ = 10

W_AssessApplication (COMPLETE)
→ A_DECLINED

17% Poisson distribution:
µ = 2, λ = 1

W_AssessApplication (COMPLETE)
→ O_CREATED

83% Normal distribution:
µ = 10, σ = 5

O_CREATED → O_SENT 100% Normal distribution:
µ = 1, σ = 0.2

O_SENT → W_ContactCustomer (START) 100% Normal distribution:
µ = 30, σ = 15

W_ContactCustomer (START)
→ W_ContactCustomer(COMPLETE)

100% Exponential distribution:
µ = 11, λ = 1

W_ContactCustomer (COMPLETE)
→ W_ContactCustomer (START)

40% Exponential distribution:
µ = 1200, λ = 1

W_ContactCustomer (COMPLETE)
→ O_CREATED

10% Normal distribution:
µ = 5, σ = 1

W_ContactCustomer (COMPLETE)
→ O_SENT_BACK

40% Normal distribution:
µ = 12, σ = 2

W_ContactCustomer (COMPLETE)
→ A_CANCELLED

10% Normal distribution:
µ = 3, σ = 0.5

O_SENT_BACK
→ W_ValidateApplication (START)

100% Exponential distribution:
µ = 30, λ = 1

W_ValidateApplication (START)
→ W_ValidateApplication (COMPLETE)

100% Normal distribution:
µ = 50, σ = 20

W_ValidateApplication (COMPLETE)
→ A_ACTIVATED

83% Normal distribution:
µ = 12, σ = 2

W_ValidateApplication (COMPLETE)
→ A_DECLINED

17% Normal distribution:
µ = 1, σ = 0.2

Table B.1: Edge annotations of the directed graph simulation model.
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Figure B.2: Streamlined process model for successful applications (own illustration).
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Figure B.3: Streamlined process model for declined applications (own illustration).
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Figure B.4: Streamlined process model for cancelled applications (own illustration).
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Figure B.5: Simplified process model used for simulation (own illustration).
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